Skip to main content

Advertisement

Log in

Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We describe the implementation and characterization of a micro-mirror-array set-up based on Micro-Electro-Mechanical System (MEMS) technology for femtosecond pulse shaping in the deep UV. We demonstrate its capability of re-compressing spectrally broadened UV pulses with a closed-loop approach based on a genetic algorithm. A single-shot synchronization scheme, taking advantage of the limited duty cycle of the device and allowing on-line correction of the signal, is described. The second dimension of the MEMS chip can be used to partially reduce the spatial chirp of the beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Brixner, G. Gerber, Femtosecond polarization pulse shaping. Opt. Lett. 26, 557–559 (2001)

    Article  ADS  Google Scholar 

  2. M. Ninck, A. Galler, T. Feurer, T. Brixner, Programmable common-path vector field synthesizer for femtosecond pulses. Opt. Lett. 32, 3379–3381 (2007)

    Article  ADS  Google Scholar 

  3. K. Hazu, T. Sekikawa, M. Yamashita, Spatial light modulator with an over-two-octave bandwidth from ultraviolet to near infrared. Opt. Lett. 32, 3318–3320 (2007)

    Article  ADS  Google Scholar 

  4. M. Roth, M. Mehendale, A. Bartelt, H. Rabitz, Acousto-optical shaping of ultraviolet femtosecond pulses. Appl. Phys. B, Lasers Opt. 80, 441–444 (2005)

    Article  ADS  Google Scholar 

  5. S. Coudreau, D. Kaplan, P. Tournois, Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP. Opt. Lett. 31, 1899–1901 (2006)

    Article  ADS  Google Scholar 

  6. B.J. Pearson, T.C. Weinacht, Shaped ultrafast laser pulses in the deep ultraviolet. Opt. Express 15, 4385–4388 (2007)

    Article  ADS  Google Scholar 

  7. C. Schriever, S. Lochbrunner, M. Optiz, E. Riedle, 19 fs shaped ultraviolet pulses. Opt. Lett. 31, 543–545 (2006)

    Article  ADS  Google Scholar 

  8. P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, G. Gerber, Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation. Appl. Phys. B, Lasers Opt. 88, 519–526 (2007)

    Article  ADS  Google Scholar 

  9. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, G. Vdovin, Pulse compression by use of deformable mirrors. Opt. Lett. 24, 493–495 (1999)

    Article  ADS  Google Scholar 

  10. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shaping in the ultraviolet. Appl. Phys. B, Lasers Opt. 76, 711–714 (2003)

    ADS  Google Scholar 

  11. K.W. Stone, M.T.W. Milder, J.C. Vaughan, K.A. Nelson, Spatiotemporal femtosecond pulse shaping using a MEMS-based micromirror SLM. Ultrafast Phenom. XV 88, 184–186 (2007)

    Article  Google Scholar 

  12. T. Abe, G. Wang, F. Kannari, Femtosecond pulse shaping on two-color laser superposition pulse using a MEMS micromirror SLM. 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, vols. 1–9 (2008), pp. 2832–2833

  13. A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)

    Article  ADS  Google Scholar 

  14. S.A. Trushin, S. Panja, K. Kosma, W.E. Schmid, W. Fuss, Supercontinuum extending from >1000 to 250 nm, generated by focusing ten-fs laser pulses at 805 nm into Ar. Appl. Phys. B, Lasers Opt. 80, 399–403 (2005)

    Article  ADS  Google Scholar 

  15. C.P. Hauri, L.T. Vuong, A.L. Gaeta, Optimized supercontinuum generation and pulse self-compression in filaments from the UV to the IR. 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, vols. 1–9 (2008), pp. 1855–1856

  16. A. Gehner, W. Doleschal, A. Elgner, R. Kauert, D. Kunze, N. Wildenhain, Active-matrix addressed micromirror array for wavefront correction in adaptive optics. MOEMS Miniaturized Syst. II 4561, 265–275 (2001)

    Google Scholar 

  17. M. Roth, J. Roslund, H. Rabitz, Assessing and managing laser system stability for quantum control experiments. Rev. Sci. Instrum. 77, 083107 (2006)

    Article  ADS  Google Scholar 

  18. B.Q. Li, H. Rabitz, J.P. Wolf, Optimal dynamic discrimination of similar quantum systems with time series data. J. Chem. Phys. 122, 154103 (2005)

    Article  ADS  Google Scholar 

  19. E.C. Carroll, A.C. Florean, P.H. Bucksbaum, K.G. Spears, R.J. Sension, Phase control of the competition between electronic transitions in a solvated laser dye. Chem. Phys. 350, 75–86 (2008)

    Article  ADS  Google Scholar 

  20. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  21. L. Bonacina, J. Extermann, A. Rondi, V. Boutou, J.P. Wolf, Multiobjective genetic approach for optimal control of photoinduced processes. Phys. Rev. A 76, 023408 (2007)

    Article  ADS  Google Scholar 

  22. X. Gu, S. Akturk, R. Trebino, Spatial chirp in ultrafast optics. Opt. Commun. 242, 599–604 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bonacina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rondi, A., Extermann, J., Bonacina, L. et al. Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet. Appl. Phys. B 96, 757–761 (2009). https://doi.org/10.1007/s00340-009-3548-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3548-2

PACS

Navigation