Skip to main content
Log in

Photorefractive effect in LiNbO3-based integrated-optical circuits at wavelengths of third telecom window

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Original results on investigation of the photorefractive effect in straight channels and integrated-optical circuits such as a directional coupler, Y-splitter and Mach–Zehnder interferometer, exploiting titanium-indiffused and proton-exchanged LiNbO3 waveguides, are presented. It has been found that the photorefractive damage is non-negligible for IR radiation with wavelengths near 1.5 μm in all circuits studied. The new methods for accurate evaluation of small extents of photorefractive effect are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.E. Wood, P.J. Cressman, R.L. Holman, C.M. Veber, Photorefractive waveguides, in Topics Appl. Phys., vol. 61, ed. by P. Gunter, J.-P. Huignard (Springer, Berlin, 1989), pp. 45–100

    Google Scholar 

  2. R.A. Becker, R.C. Williamson, Appl. Phys. Lett. 47, 1024 (1985)

    Article  ADS  Google Scholar 

  3. R.A. Becker, Proc. SPIE 578, 12 (1985)

    Google Scholar 

  4. T. Fujiwara, R. Srivastava, X. Cao, R.V. Ramaswamy, Opt. Lett. 18, 346 (1993)

    Article  ADS  Google Scholar 

  5. G.T. Harvey, G. Astfalk, A.Y. Feldblum, B. Kassahuh, J. Quantum Electron. 22, 939 (1986)

    Article  ADS  Google Scholar 

  6. G.T. Harvey, J. Lightwave Technol. 6, 872 (1988)

    Article  ADS  Google Scholar 

  7. Y. Fujii, Y. Otsuka, A. Ikeda, IEICE Trans. Electron. E90-C, 1081 (2007)

    Article  Google Scholar 

  8. D.B. Maring, S.M. Kostritskii, R.F. Tavlykaev, R.V. Ramaswamy, Integrated Photonics Research, OSA Technical digest, RTuK4-1, 281 (1999)

  9. S.M. Kostritskii, in Technical Digest of the Workshop Lithium Niobate from Material to Device, from Device to System, Metz, France, May 23–25, 2005, pp. 59–64 (2005)

  10. N.A. Riza (ed.), Photonic Control Systems for Phased Array Antennas. SPIE Milestone Series, MS 136 (1997)

  11. J.-P. Ruske, B. Zeitner, A. Tunnermann, A.S. Rasch, Electron. Lett. 39, 1048 (2003)

    Article  Google Scholar 

  12. H. Lefevre, The Fiber–Optic Gyroscope (Artech House, Norwood, 1993)

    Google Scholar 

  13. R. Renger, W. Sohler, Appl. Phys. B 36, 143 (1985)

    Article  ADS  Google Scholar 

  14. J.C. Chon, W. Feng, A.R. Mickelson, Appl. Opt. 32, 7572–7590 (1993)

    Article  ADS  Google Scholar 

  15. H. Saaki, I. Anderson, IEEE J. Quantum Electron. QE-1, 883 (1978)

    Article  ADS  Google Scholar 

  16. W.K. Burns, A.F. Milton, Waveguide transitions and junctions, in Guided-Wave Optoelectronics, ed. by T. Tamir (Springer, Berlin, 1988), pp. 89–144

    Google Scholar 

  17. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1985), pp. 36–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Kostritskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostritskii, S.M. Photorefractive effect in LiNbO3-based integrated-optical circuits at wavelengths of third telecom window. Appl. Phys. B 95, 421–428 (2009). https://doi.org/10.1007/s00340-009-3501-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3501-4

PACS

Navigation