Skip to main content
Log in

Holographic phase conjugation through a sub-wavelength hole

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Holographic phase conjugation is analyzed as a method to create a photo-refractive lens with high numerical aperture. For this purpose a sub-wavelength hole is drilled into a metal surface directly on top of an iron-doped lithium niobate crystal. An interference pattern generated by the light coming from this point source and a plane reference wave is recorded. By using the phase-conjugated reference wave for read-out, a light wave being focused onto the former point source is reconstructed. In principle, a focusing system close to the theoretical diffraction limit could be implemented by this method. The performance of this arrangement is mainly determined by properties of the lithium niobate crystal, especially the crystal symmetry. Experimentally, the tight holographic focusing is demonstrated. The focus width of the reconstructed wave is shown to be below 1.2 μm, which is our spatial resolution. The diffraction efficiency obtained, however, is just 3×10−5 compared to 3×10−2 in the plane-wave case. This can be explained by experimental reasons, the inhomogeneous light intensity and limitations originating from the crystal symmetry. We estimate that the diffraction efficiency for phase conjugation through a sub-wavelength hole can be improved by three to four orders of magnitude by addressing the above-mentioned issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ma, B. Catanzaro, J.E. Ford, Y. Fainman, S.H. Lee, Photorefractive holographic lenses applications for dynamic focusing and dynamic image shifting. J. Opt. Soc. Am. A 11, 2471–2480 (1994)

    Article  ADS  Google Scholar 

  2. W. Liu, D. Psaltis, Pixel size limit in holographic memories. Opt. Lett. 24, 1340–1342 (1999)

    Article  ADS  Google Scholar 

  3. B.L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, N. Peyghambarian, A polymeric optical pattern recognition system for security verification. Nature 383, 58–60 (1996)

    Article  ADS  Google Scholar 

  4. Z. Yaqoob, D. Psaltis, M.S. Feld, C. Yang, Optical phase conjugation for turbidity suppression in biological samples. Nature Photonics 2, 110–115 (2008)

    Article  ADS  Google Scholar 

  5. G. Barbastathis, M. Levene, D. Psaltis, Shift multiplexing with spherical reference waves. Appl. Opt. 35, 2403–2417 (1996)

    Article  ADS  Google Scholar 

  6. B. Vohnson, S.I. Bozhevolnyi, Holographic approach to phase conjugation of optical near fields. J. Opt. Soc. Am. A 14, 1491–1499 (1997)

    Article  ADS  Google Scholar 

  7. G. Lerosey, J. Rosney, A. Tourin, M. Fink, Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007)

    Article  ADS  Google Scholar 

  8. P. Günter, J.-P. Huignard (Eds.), Photorefractive materials and their applications. Springer series in optical sciences, vols. 1–3 (Springer, Berlin, 2005, 2006, 2007)

    Google Scholar 

  9. K. Buse, Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods. Appl. Phys. B 64, 273–291 (1997)

    Article  ADS  Google Scholar 

  10. K. Buse, Light-induced charge transport processes in photorefractive crystals II: Materials. Appl. Phys. B 64, 391–407 (1997)

    Article  ADS  Google Scholar 

  11. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods. Appl. Phys. 12, 355–368 (1977)

    Article  ADS  Google Scholar 

  12. H. Kogelnik, Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 2909–2947 (1969)

    Google Scholar 

  13. S. Tao, B. Wang, G.W. Burr, J. Chen, Diffraction efficiency of volume gratings with finite size: corrected analytical solution. J. Mod. Opt. 51, 1115–1122 (2004)

    MATH  ADS  MathSciNet  Google Scholar 

  14. C. Genet, T.W. Ebbesen, Light in tiny holes. Nature 445, 39–46 (2007)

    Article  ADS  Google Scholar 

  15. H.A. Bethe, Theory of diffraction by small holes. Phys. Rev. 66, 163 (1944)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. N.V. Kukhtarev, Kinetics of hologram recording and erasure in electrooptic crystals. Sov. Tech. Phys. Lett. 2, 438–440 (1976)

    Google Scholar 

  17. F. Kalkum, K. Peithmann, K. Buse, Dynamics of holographic recording with focused beams in iron-doped lithium niobate crystals. Opt. Express 17, 1321–1329 (2009)

    Article  ADS  Google Scholar 

  18. M. Jazbinsek, M. Zgonik, Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics. Appl. Phys. B 74, 407–414 (2002)

    Article  ADS  Google Scholar 

  19. K. Peithmann, A. Wiebrock, K. Buse, Photorefractive properties of highly-doped lithium niobate crystals in the visible near-infrared. Appl. Phys. B 68, 777–784 (1999)

    Article  ADS  Google Scholar 

  20. S. Odoulov, Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals. JETP Lett. 35, 10–13 (1982)

    ADS  Google Scholar 

  21. G. Montemezzani, M. Zgonik, Light diffraction at mixed phase and absorption gratings in anistrotropic media for arbitrary geometry. Phys. Rev. E 55, 1035–1047 (1996)

    Article  ADS  Google Scholar 

  22. G.J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, F. Havermeyer, Volume holographic grating wavelength stabilized laser diodes. IEEE J. Sel. Top. Quantum Electron. 13, 672–678 (2007)

    Article  Google Scholar 

  23. B.L. Volodin, S.V. Dolgy, E.D. Melnik, E. Downs, J. Shaw, V.S. Ban, Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Opt. Lett. 29, 1891–1893 (2004)

    Article  ADS  Google Scholar 

  24. T.Y. Chung, A. Rapaport, V. Smirnov, L.B. Glebov, M.C. Richardson, M. Bass, Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror. Opt. Lett. 31, 229–231 (2006)

    Article  ADS  Google Scholar 

  25. S.J. Zilker, T. Bieringer, D. Haarer, R.S. Stein, J.W. van Egmond, S.G. Kostromine, Holographic data storage in amorphous polymers. Adv. Mater. 10, 855–859 (1998)

    Article  Google Scholar 

  26. R. Hagen, T. Bieringer, Photoaddressable Polymers for optical data storage. Adv. Mater. 13, 1805–1810 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kalkum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalkum, F., Broch, S., Brands, T. et al. Holographic phase conjugation through a sub-wavelength hole. Appl. Phys. B 95, 637–645 (2009). https://doi.org/10.1007/s00340-009-3384-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3384-4

PACS

Navigation