Skip to main content
Log in

Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The effect that femtosecond laser filamentation has on the refractive index of Nd:YAG ceramics, and which leads to the formation of waveguide lasers, has been studied by micro-spectroscopy imaging, beam propagation experiments and calculations. From the analysis of the Nd3+ luminescence and Raman images, two main types of laser induced modifications have been found to contribute to the refractive-index change: (i) a lattice defect contribution localized along the self-focusing volume of the laser pulses, in which lattice damage causes a refractive-index decrease, and (ii) a lattice strain-field contribution around and inside the filaments, in which the pressure-driven variation of the inter-atomic distances causes refractive-index variations. Scanning near-field optical-transmission and end-coupling experiments, in combination with beam propagation calculations, have been used to quantitatively determine the corresponding contribution of each effect to the refractive-index field of double-filament waveguides. Results indicate that the strain-field induced refractive-index increment is the main mechanism leading to waveguiding, whereas the damage-induced refractive-index reduction at filaments leads to a stronger mode confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Fork, B.I. Greene, C.V. Shank, Appl. Phys. Lett. 38, 671 (1981)

    Article  ADS  Google Scholar 

  2. R.L. Fork, O.E. Martínez, J.P. Gordon, Opt. Lett. 9, 5 (1984)

    Article  Google Scholar 

  3. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994)

    Article  ADS  Google Scholar 

  4. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21(21), 1729 (1996)

    Article  ADS  Google Scholar 

  5. Y. Kawata, H. Ueki, Y. Hashimoto, S. Kawata, Appl. Opt. 34(20), 4105–4110 (1995)

    Article  ADS  Google Scholar 

  6. E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, E. Mazur, Opt. Lett. 21(24), 2023 (1996)

    Article  ADS  Google Scholar 

  7. Y. Sikorski, A.A. Said, P. Bado, R. Maynard, C. Florea, K.A. Winick, Electron. Lett. 36, 226–227 (2000)

    Article  Google Scholar 

  8. J. Burghoff, C. Grebing, S. Nolte, A. Tunnermann, Appl. Phys. Lett. 89, 8 (2006)

    Article  Google Scholar 

  9. W. Watanabe, T. Asano, K. Yamada, K. Itoh, Opt. Lett. 28, 2491 (2003)

    Article  ADS  Google Scholar 

  10. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, K. Hirao, Opt. Lett. 30, 352 (2005)

    Article  ADS  Google Scholar 

  11. Y. Chen, K. Sugioka, K. Midorikawa, Opt. Lett. 29, 2007 (2004)

    Article  ADS  Google Scholar 

  12. G. Zhou, M. Gu, Opt. Lett. 31(18), 2783 (2006)

    Article  ADS  Google Scholar 

  13. C. Mendez, J.R. Vazquez de Aldana, G.A. Torchia, L. Roso, Appl. Phys. B 86, 343 (2007)

    Article  ADS  Google Scholar 

  14. A.M. Streltsov, N. Borrelli, J. Opt. Soc. Am. B 19, 2496 (2002)

    Article  ADS  Google Scholar 

  15. F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, L. Loza-Alvarez, Appl. Phys. Lett. 87, 021109 (2005)

    Article  ADS  Google Scholar 

  16. J. Burghoff, C. Grebin, S. Nolte, A. Tünnermann, Appl. Surf. Sci. 253, 7899 (2007)

    Article  ADS  Google Scholar 

  17. R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, Appl. Phys. Lett. 88, 111109 (2006)

    Article  ADS  Google Scholar 

  18. R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, G. Cerullo, Appl. Phys. A 93, 17 (2008)

    Article  ADS  Google Scholar 

  19. A. Ródenas, J.A. Sanz García, D. Jaque, G.A. Torchia, C. Méndez, I. Arias, L. Roso, F. Agulló-Rueda, J. Appl. Phys. 100, 033521 (2006)

    Article  ADS  Google Scholar 

  20. R. Won, Nat. Photon. 2, 216 (2008)

    Article  ADS  Google Scholar 

  21. T. Taira, IEEE J. Sel. Top. Quantum Electron. 13, 798 (2007)

    Article  Google Scholar 

  22. C. Jacinto, A. Benayas, T. Catunda, J. Garcia-Sole, A.A. Kaminskii, D. Jaque, J. Chem. Phys. 129, 104705 (2008)

    Article  ADS  Google Scholar 

  23. A. Ródenas, G. Zhou, D. Jaque, M. Gu, Appl. Phys. Lett. 93, 151104 (2008)

    Article  ADS  Google Scholar 

  24. G.A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, Appl. Phys. Lett. 92, 111103 (2008)

    Article  ADS  Google Scholar 

  25. P.E. Häninen, S.W. Hell, Bioimaging 2, 117–121 (1994)

    Article  Google Scholar 

  26. www.baikowskichimie.com/

  27. Olympus FluoView Resource Center, http://www.olympusfluoview.com

  28. P. Grunberg, S. Hufner, E. Orlich, J. Schmitt, Phys. Rev. 184, 285–293 (1969)

    Article  ADS  Google Scholar 

  29. I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    Article  ADS  Google Scholar 

  30. J. Lamela, A. Ródenas, G. Lifante, D. Jaque, F. Jaque, A.A. Kaminskii, Laser Phys. Lett. 5(4), 291–295 (2008)

    Article  Google Scholar 

  31. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, U. Glatzel, Appl. Phys. A 76, 309–311 (2003)

    Article  ADS  Google Scholar 

  32. R.S. Taylor, C. Hnatovsky, E. Simova, D.M. Rayner, M. Mehandale, V.R. Bhardwaj, P.B. Corkum, Opt. Express 11, 775 (2003)

    Article  ADS  Google Scholar 

  33. A.A. Kamisnkii, Laser Photon. Rev. 1, 93 (2007)

    Article  Google Scholar 

  34. A.A. Kamisnkii, Laser Crystals (Springer, Berlin, 1981)

    Google Scholar 

  35. S. Kobyakov, A. Kaminska, A. Suchocki, D. Galanciak, M. Malinowski, Appl. Phys. Lett. 88, 234102 (2006)

    Article  ADS  Google Scholar 

  36. B. Henderson, G.F. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford Science, New York, 1989)

    Google Scholar 

  37. G.V. Vazquez, J. Rickards, G. Lifante, M. Domenech, E. Cantelar, Opt. Express 11, 1291 (2003)

    Article  ADS  Google Scholar 

  38. S.J. Field, D.C. Hanna, D.P. Shepherd, A.C. Tropper, P.J. Chandler, P.D. Townsend, L. Zhang, IEEE J. Quantum Electron. 27, 428 (1991)

    Article  ADS  Google Scholar 

  39. Y.X. Kong, F. Chen, D. Jaque, Y. Tan, N.N. Dong, Q.M. Lu, H.J. Ma, J. Phys. D: Appl. Phys. 41, 175112 (2008)

    Article  ADS  Google Scholar 

  40. J. Burghoff, S. Nolte, A. Tünnermann, Appl. Phys. A 89, 127–132 (2007)

    Article  ADS  Google Scholar 

  41. N.T. Nguyen, A. Saliminia, S.L. Chin, R. Vallée, Appl. Phys. B 85, 145–148 (2006)

    Article  ADS  Google Scholar 

  42. K. Papagelis, G. Kanellis, S. Ves, G.A. Kourouklis, Phys. Status Solidi (b) 233, 134 (2002)

    Article  ADS  Google Scholar 

  43. S.M. Kostritskii, P. Moretti, Phys. Status Solidi (c) 11, 3126 (2004)

    Article  ADS  Google Scholar 

  44. C.A. Merchant, J.S. Aitchison, S.G. Blanco, C. Hnatovsky, R.S. Taylor, F. Agulló-Rueda, A.J. Kellok, J.E.E. Baglin, Appl. Phys. Lett. 89, 111116 (2006)

    Article  ADS  Google Scholar 

  45. A. Ródenas, A.H. Nejadmalayeri, D. Jaque, P.R. Herman, Opt. Express 16(18), 13979 (2008)

    Article  ADS  Google Scholar 

  46. A.H. Nejadmalayeri, P.R. Herman, Opt. Express 15, 10842 (2007)

    Article  ADS  Google Scholar 

  47. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)

    Google Scholar 

  48. P.D. Towndsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  49. A. Ikesue, Y.L. Aung, T. Yoda, S. Nakayama, T. Kamimura, Opt. Mater. 29, 1289 (2007)

    Article  ADS  Google Scholar 

  50. H. Yagi, T. Yanagitani, T. Numazawa, K. Ueda, Ceram. Int. 33, 711 (2007)

    Article  Google Scholar 

  51. T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agullo Lopez, A. Garcia Navarro, G. Garcia, J. Phys. D: Appl. Phys. 40, 4454 (2007)

    Article  ADS  Google Scholar 

  52. Y. Jiang, K.M. Wang, X.L. Wang, F. Chen, C.L. Jia, L. Wang, Y. Liao, Phys. Rev. B 75, 195101 (2007)

    Article  ADS  Google Scholar 

  53. J. Siebenmorgen, K. Rademaker, S. Nolte, G. Huber, in Europhoton Proc. THoD. 7, 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ródenas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ródenas, A., Torchia, G.A., Lifante, G. et al. Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations. Appl. Phys. B 95, 85–96 (2009). https://doi.org/10.1007/s00340-008-3353-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3353-3

PACS

Navigation