Skip to main content
Log in

Spectral measurements of incipient plasma temperature and electron number density during laser ablation of aluminum in air

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Plasmas generated during incipient laser ablation of aluminum in air were studied using emission spectroscopy. A plasma emission model was developed, invoking one-dimensional radiative transfer, to describe the observed emission spectra, while taking into account the effects of continuum radiation. Theoretical spectra were calculated and compared to experimental spectra in the range 387–406 nm. Satisfactory agreement was found between the experimental and predicted spectra, especially at delay times of 30–200 ns, thus providing plasma temperatures and electron number densities as functions of delay time and laser irradiance (1.8–8.0 GW/cm2). In general, both the plasma temperature and electron number density rise at greater laser irradiances but drop at increasing delay times, with a more rapid drop for delay times less than 60 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Wu, Y. Shin, J. Appl. Phys. 97, 1197 (2006)

    Google Scholar 

  2. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775 (1990)

    Article  ADS  Google Scholar 

  3. D. Devaux, R. Fabbro, L. Tollier, E. Bartnicki, J. Appl. Phys. 74, 2268 (1993)

    Article  ADS  Google Scholar 

  4. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, J. Appl. Phys. 82, 2826 (1997)

    Article  ADS  Google Scholar 

  5. L. Berthe, R. Fabbro, P. Peyre, E. Bartnicki, Eur. Phys. J. Appl. Phys. 3, 215 (1998)

    Article  ADS  Google Scholar 

  6. P. Peyre, L. Berthe, X. Scherpereel, R. Fabbro, E. Bartnicki, J. Appl. Phys. 84, 5985 (1998)

    Article  ADS  Google Scholar 

  7. L. Berthe, R. Fabbro, P. Peyre, E. Bartnicki, J. Appl. Phys. 85, 7552 (1999)

    Article  ADS  Google Scholar 

  8. L. Berthe, A. Sollier, P. Peyre, C. Carboni, E. Bartnicki, R. Fabbro, Proc. Int. Soc. Opt. Eng. 4065, 511 (2000)

    Google Scholar 

  9. L. Berthe, A. Sollier, P. Peyre, R. Fabbro, E. Bartnicki, J. Phys. D Appl. Phys. 33, 2142 (2000)

    Article  ADS  Google Scholar 

  10. K. Saito, K. Takatani, T. Sakka, Y.H. Ogata, Appl. Surf. Sci. 197/198, 56 (2002)

    Google Scholar 

  11. S.S. Harilal, C.V. Bindhu, V.P.N. Nampoori, C.P.G. Vallabhan, Appl. Phys. B 66, 633 (1998)

    Article  ADS  Google Scholar 

  12. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Appl. Phys. 93, 2380 (2003)

    Article  ADS  Google Scholar 

  13. H. Furusawa, T. Sakka, Y.H. Ogata, J. Appl. Phys. 96, 975 (2004)

    Article  ADS  Google Scholar 

  14. T. Sakka, T. Nakajima, Y.H. Ogata, J. Appl. Phys. 92, 2296 (2002)

    Article  ADS  Google Scholar 

  15. J. Hermann, C. Boulmer-Leborgne, D. Hong, J. Appl. Phys. 83, 691 (1998)

    Article  ADS  Google Scholar 

  16. C. Zeng, X. Mao, S.S. Mao, J.H. Yoo, R. Greif, R.E. Russo, J. Appl. Phys. 95, 816 (2004)

    Article  ADS  Google Scholar 

  17. H.C. Liu, X.L. Mao, J.H. Yoo, R.E. Russo, Spectrochim. Acta B 54, 1607 (1999)

    Article  Google Scholar 

  18. G.J. Bastiaans, R.A. Mangold, Spectrochim. Acta B 40, 885 (1985)

    Article  ADS  Google Scholar 

  19. I.B. Gornushkin, C.L. Stevenson, B.W. Smith, N. Omenetto, J.D. Winefordner, Spectrochim. Acta B 56, 1769 (2001)

    Article  Google Scholar 

  20. H. Zwicker, in: Plasma Diagnostics ed. by W. Lochte-Holtgreven (Amsterdam, North Holland, 1968)

  21. M. Sabsabi, P. Cielo, Appl. Spectrosc. 49, 499 (1995)

    Article  ADS  Google Scholar 

  22. L.A. Doyle, G.W. Martin, A. Al-Khateeb, I. Weaver, D. Riley, M.J. Lamb, T. Morrow, C.L.S. Lewis, Appl. Surf. Sci. 127129, 716 (1998)

  23. R.W. Dreyfus, R. Kelly, R.E. Walkup, Appl. Phys. Lett. 49, 1478 (1986)

    Article  ADS  Google Scholar 

  24. E.A. Rohlfing, J. Chem. Phys. 89, 6103 (1988)

    Article  ADS  Google Scholar 

  25. B. Wu, H. Pakhal, Y. Shin, N. Laurendeau, R. Lucht, Phys. Rev. E 76, 026405 (2007)

    Article  ADS  Google Scholar 

  26. N.M. Laurendeau, Statistical Thermodynamics: Fundamentals and Applications (Cambridge University Press, New York, 2005)

    MATH  Google Scholar 

  27. H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964)

    Google Scholar 

  28. J.E. Sansonetti, W.C. Martin S.L. Young, Handbook of Basic Atomic Spectroscopic Data (National Institute of Standards and Technology, Gaithersburg, MD, 2004), http://physics.nist.gov/PhysRefData/Handbook/index.html

  29. F. Cabannes, J. Chapelle, in: Reactions Under Plasma Conditions, ed. by M. Venugopal (Wiley-Interscience, New York, 1971)

  30. W. Lochte-Holtgreven (Ed.), Plasma Diagnostics (Amsterdam, North Holland, 1968)

  31. P.J. Brussaard, H.C. van de Hulst, Rev. Mod. Phys. 34, 31 (1962)

    Article  Google Scholar 

  32. J.A. Aguilera, C. Aragón, Spectrochim. Acta B 59, 1861 (2004)

    Article  Google Scholar 

  33. R. Noll, R. Sattmann, V. Sturm, S. Winkelmann, J. Anal. Atom. Spectrom. 19, 419 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.M. Laurendeau.

Additional information

PACS

42.62.Fi; 52.25.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakhal, H., Lucht, R. & Laurendeau, N. Spectral measurements of incipient plasma temperature and electron number density during laser ablation of aluminum in air. Appl. Phys. B 90, 15–27 (2008). https://doi.org/10.1007/s00340-007-2816-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2816-2

Keywords

Navigation