Skip to main content
Log in

Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Images and emission spectra of sparks produced by laser-induced breakdown in air were investigated with a high degree of spatial and temporal resolution. The laser-induced breakdown was generated by focusing a 532-nm nanosecond pulse from a Q-switched Nd:YAG laser. The data were collected using a framing intensified charged coupled device (CCD) camera and a multi-fiber Cassegrain optics system coupled to an intensified CCD spectrometer. The results provided information about the different stages of laser-induced breakdown. The plasma shape and emission spectrum were very reproducible. Different ionization levels in the plasma kernels, which were observed using the high spatial resolution of the multi-fiber Cassegrain optics system, occurred during the plasma formation and cooling and at different locations within the plasma. This was due mainly to the thickness of the plasma relative to the laser wavelength, which created different ionization levels and energy absorption rates throughout. These observations were correlated with the plasma visualizations obtained with the framing ICCD camera. The plasma emission analysis permitted us to study the temperature evolution along the plasma during the laser-induced breakdown process. The analysis demonstrated the validity of a laser-supported wave model during the first stages of laser-induced breakdown and illustrated the weak dependence of the plasma temperature on the input energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.G. Morgan, Rep. Prog. Phys. 38, 621 (1975)

    Article  ADS  Google Scholar 

  2. R.G. Root, Modeling of post-breakdown phenomena, in Laser-Induced Plasmas and Applications, ed. by L.J. Radziemski, D.A. Cremers (Marcel Dekker, New York and Basel, 1989), p. 69

  3. T.A. Spiglanin, A. McIlroy, E.W. Fournier, R.B. Cohen, J.A. Syage, Combust. Flame 102, 310 (1995)

    Article  Google Scholar 

  4. T.X. Phuoc, Combust. Flame 119, 203 (1975)

    Article  Google Scholar 

  5. D. Bradley, C.G.W. Sheppard, I.M. Suardjaja, R. Woolley, Combust. Flame 138, 55 (2004)

    Article  Google Scholar 

  6. Y.L. Chen, J.W.L. Lewis, D. Parigger, J. Quantum Spectrosc. Radiat. Transf. 67, 91 (2000)

    Article  ADS  Google Scholar 

  7. J.L. Beduneau, K. Bonggyu, L. Zimmer, Y. Ikeda, Combust. Flame 132, 653 (2003)

    Article  Google Scholar 

  8. S. Yalçin, D.R. Crosley, G.P. Smith, G.W. Faris, Appl. Phys. B 68, 121 (1999)

    Article  ADS  Google Scholar 

  9. D. Bradely, C.G.W. Sheppard, I.M. Suardjaja, R. Woolley, Combust. Flame 138, 55 (2004)

    Article  Google Scholar 

  10. X. Mao, X. Zeng, S.B. Wen, R.E. Russo, Spectrochim. Acta B 60, 960 (2005)

    Article  ADS  Google Scholar 

  11. L.J. Radziemski, Spectrochim. Acta B 57, 1109 (2002)

    Article  ADS  Google Scholar 

  12. P.D. Ronney, Opt. Eng. 33, 510 (1994)

    Article  ADS  Google Scholar 

  13. L.D. Medoff, A. McIlroy, J. Propul. Power 13, 721 (1997)

    Article  Google Scholar 

  14. M.H. Morsy, S.H. Chung, Exp. Thermal Fluid Sci. 27, 491 (2003)

    Article  Google Scholar 

  15. P. Stavropoulos, A. Michalakou, G. Skevis, S. Couris, Spectrochim. Acta B 60, 1092 (2005)

    Article  ADS  Google Scholar 

  16. J. Siegel, G. Epurescu, A. Perea, F.J. Gordillo-Vasquez, J. Gonzalo, C.N. Alfonso, Spectrochim. Acta B 60, 915 (2005)

    Article  ADS  Google Scholar 

  17. H. Horisawa, S. Tsuchiya, J. Negishi, Y. Okawa, I. Kimura, Vacuum 73, 439 (2004)

    Article  Google Scholar 

  18. T.W. Lee, N. Hedge, Combust. Flame 142, 314 (2005)

    Article  Google Scholar 

  19. M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, F. Winter, Int. J. Hydrogen Energ. 30, 319 (2005)

    Article  Google Scholar 

  20. V.I. Bergel’son, T.V. Loseva, I.V. Nemchinov, T.I. Orlova, Sov. J. Plasma Phys. 1, 498 (1975)

    Google Scholar 

  21. J.A. Aguilera, C. Aragon, Spectrochim. Acta B 59, 1861 (2004)

    Article  ADS  Google Scholar 

  22. L.J. Radziemski, T.R. Loree, D.A. Cremers, N.M. Hoffmann, Anal. Chem. 55, 1246 (1983)

    Google Scholar 

  23. D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. Mclean. M. Croft, Appl. Phys. Lett. 51, 619 (1987)

    Article  ADS  Google Scholar 

  24. C.A. Bye, A. Scheeline, Appl. Spectrosc. 47, 2022 (1993)

    Article  ADS  Google Scholar 

  25. J.X. Ma, D.R. Alexander, D.E. Poulain, Combust. Flame 112, 492 (1988)

    Article  Google Scholar 

  26. J.A. Syage, E.W. Fournier, R. Rianda, R.B. Cohen, J. Appl. Phys. 64, 1499 (1988)

    Article  ADS  Google Scholar 

  27. F. Akamatsu, T. Wakabayashi, D. Tsuhima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, T. Nakajima, Meas. Sci. Technol. 10, 1240 (1999)

    Article  ADS  Google Scholar 

  28. Y. Ikeda, J. Kojima, T. Nakajima, F. Akamatsu, M. Katsuki, Proc. Combust. Inst. 28, 343 (2000)

    Article  Google Scholar 

  29. J.L. Beduneau, Y. Ikeda, J. Quantum Spectrosc. Radiat. Transf. 84, 123 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kawahara.

Additional information

PACS

52.50.Jm; 52.70.-m; 51.50.+v

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawahara, N., Beduneau, J., Nakayama, T. et al. Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air. Appl. Phys. B 86, 605–614 (2007). https://doi.org/10.1007/s00340-006-2531-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2531-4

Keywords

Navigation