Skip to main content
Log in

Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser

  • Rapid communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on laser-diode pumped low-threshold, and compact passively Q-switched Yb:YAG microchip lasers, with Cr4+:YAG crystals as the saturable absorbers. The laser threshold at the fundamental wavelength of 1.03 μm is as low as 0.25 W, and the slope efficiency is as high as 36.8%, and the optical-to-optical efficiency is as high as 27% for the 95% initial transmission of the Cr4+:YAG crystal. A pulse width of 1.35 ns and peak power of over 8.2 kW was obtained. Using a 5 mm thick KTP crystal as the second-harmonic generation medium, 514.7 nm green light of 155 mW power was generated. The pulse duration of 480 ps was generated at 1.03 μm by using 85% of the initial transmission of the Cr4+:YAG saturable absorber. Stable single-longitudinal-mode oscillation and wide-separated multi-longitudinal-mode oscillation due to the etalon effect of the Cr4+:YAG thin plate was achieved at different pump power levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Zayhowski, C. Dill III, Opt. Lett. 19, 1427 (1994)

    ADS  Google Scholar 

  2. B. Braun, F.X. Kartner, G. Zhang, M. Moser, U. Keller, Opt. Lett. 22, 381 (1997)

    ADS  Google Scholar 

  3. C. Stewen, K. Contag, M. Larionov, A. Giessen, H. Hugel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000)

    Article  Google Scholar 

  4. D.S. Sumida, T.Y. Fan, Opt. Lett. 19, 1343 (1994)

    Article  ADS  Google Scholar 

  5. T.Y. Fan, IEEE J. Quantum Electron. QE-29, 1457 (1993)

    Article  ADS  Google Scholar 

  6. H.W. Bruesselbach, D.S. Sumida, R.A. Reeder, R.W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997)

    Article  Google Scholar 

  7. J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, J. Opt. Soc. Am. B 20, 1975 (2003)

    ADS  Google Scholar 

  8. F.D. Patel, E.C. Honea, J. Speth, S.A. Payne, R. Hutcheson, R. Equall, IEEE J. Quantum Electron. QE-37, 135 (2001)

    Article  Google Scholar 

  9. T.Y. Fan, J. Ochoa, IEEE Photon. Technol. Lett. 7, 1137 (1995)

    Article  Google Scholar 

  10. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, X. Xie, Appl. Opt. 40, 4303 (2001)

    ADS  Google Scholar 

  11. G.J. Spuhler, R. Paschotta, M.P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, U. Keller, Appl. Phys. B 72, 285 (2001)

    ADS  Google Scholar 

  12. J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, A.A. Kaminskii, Laser Phys. Lett. 2, 387 (2005)

    Article  Google Scholar 

  13. J. Dong, P. Deng, J. Luminesc. 104, 151 (2003)

    Article  ADS  Google Scholar 

  14. H. Eilers, U. Hommerich, S.M. Jacobsen, W.M. Yen, K.R. Hoffman, W. Jia, Phys. Rev. B 49, 15505 (1994)

    Article  ADS  Google Scholar 

  15. R. Feldman, Y. Shimony, Z. Burshtein, Opt. Mater. 24, 333 (2003)

    Article  ADS  Google Scholar 

  16. V.G. Ostroumov, F. Heine, S. Kuck, G. Huber, V.A. Mikhailov, I.A. Shcherbakov, Appl. Phys. B 64, (1997)

  17. T.T. Kajava, A.L. Gaeta, Opt. Commun. 137, 93 (1997)

    Article  ADS  Google Scholar 

  18. Y.F. Chen, IEEE Photon. Technol. Lett. 9, 1481 (1997)

    Article  Google Scholar 

  19. N. Pavel, J. Saikawa, T. Taira, Opt. Commun. 195, 233 (2001)

    Article  ADS  Google Scholar 

  20. T. Taira, Y. Matsuoka, H. Sakai, A. Sone, H. Kan, in CLEO/QELS Conf. 2006 (CA, USA, 2006), p. CWF6

  21. J.J. Zayhowski, IEEE Photon. Technol. Lett. 9, 925 (1997)

    Article  Google Scholar 

  22. J.J. Zayhowski, Opt. Mater. 11, 255 (1999)

    Article  ADS  Google Scholar 

  23. J.J. Degnan, IEEE J. Quantum Electron. QE-31, 1890 (1995)

    Article  ADS  Google Scholar 

  24. J.J. Degnan, IEEE J. Quantum Electron. QE-25, 214 (1989)

    Article  ADS  Google Scholar 

  25. H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, K. Ueda, Japan. J. Appl. Phys. 45, 133 (2006)

    Article  ADS  Google Scholar 

  26. W. Kochner, Solid State Laser Engineering (Springer, Berlin, 1999)

    Google Scholar 

  27. J. Dong, A. Shirakawa, K. Ueda, J. Xu, P. Deng, Appl. Phys. Lett. 88, 161115 (2006)

    Article  ADS  Google Scholar 

  28. J. Dong, K. Ueda, Appl. Phys. Lett. 87, 151102 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dong.

Additional information

PACS

42.55.Sa; 42.55.Xi; 42.60.Gd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, J., Shirakawa, A. & Ueda, KI. Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser. Appl. Phys. B 85, 513–518 (2006). https://doi.org/10.1007/s00340-006-2458-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2458-9

Keywords

Navigation