Skip to main content
Log in

The modification effect in magnetization behaviors for CoFe2O4–p-NiFe2O4 binary ferrofluids

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The magnetization curves of CoFe2O4 ferrofluids, p-NiFe2O4 paramagnetic fluids and CoFe2O4–p-NiFe2O4 binary ferrofluids, in which the volume fraction of CoFe2O4 particles φ Co is 0.6% and one of p-NiFe2O4 particles φ Ni is 0.2%, 0.4%, 0.6% and 0.8% respectively, prepared by the Massart method, have been measured at room temperature. Comparison of the experimental data from the CoFe2O4 ferrofluids with the Langevin theory curves demonstrates a considerable difference between them, but a curve fitted using a model of a gas-like compression (MGC) agrees with the experimental data very well. The experimental results show that the magnetization of the CoFe2O4–p-NiFe2O4 binary ferrofluid is not a simple summation of the ferrimagnetic CoFe2O4 part and the paramagnetic p-NiFe2O4 part. From the fitted results, it was found that the saturation magnetization of the CoFe2O4 part of the binary ferrofluid depends non-monotonically on the p-NiFe2O4 particle volume fraction, and the CoFe2O4 part is a stronger “hard” magnet than CoFe2O4 in simple ferrofluids. The magnetization behavior of the binary ferrofluids is explained by the modification of the microstructure of CoFe2O4 nanoparticle system by the p-NiFe2O4 nanoparticle system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Huke, M. Lücke, Rep. Prog. Phys. 67, 1731 (2004)

    Article  ADS  Google Scholar 

  2. A.Yu. Zubarev, L.Yu. Iskakova, Colloid J. 65, 778 (2003)

    Article  Google Scholar 

  3. G.M. Range, S.H.L. Klapp, Phys. Rev. E 69, 041201 (2004)

    Article  ADS  Google Scholar 

  4. J.P. Huang, Z.W. Wang, C. Holm, J. Magn. Magn. Mater. 289, 234 (2005)

    Article  ADS  Google Scholar 

  5. G.M. Range, S.H.L. Klapp, J. Chem. Phys. 122, 224902 (2005)

    Article  ADS  Google Scholar 

  6. J.J. Miles, R.W. Chantrell, M.R. Parker, J. Appl. Phys. 57, 4271 (1985)

    Article  ADS  Google Scholar 

  7. S.N. Han, J. Li, R.L. Gao, T.Z. Zhang, B.C. Wen, J. Exp. Nanosci. 4, 9 (2009)

    Article  Google Scholar 

  8. Y. Shi, J. Ding, X. Liu, J. Wang, J. Magn. Magn. Mater. 205, 249 (1999)

    Article  ADS  Google Scholar 

  9. M. Tu, J.Y. Shen, Y. Chen, Thermochim. Acta 302, 117 (1997)

    Article  Google Scholar 

  10. A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, J.L. López, R. Paniago, A.I.C. Persiano, J. Magn. Magn. Mater. 226–230, 1379 (2001)

    Article  Google Scholar 

  11. J. Li, D.L. Dai, X.D. Liu, Y.Q. Lin, Y. Huang, L. Bai, J. Mater. Res. 22, 886 (2007)

    Article  ADS  Google Scholar 

  12. R. Massrt, IEEE Trans. Magn. 17, 1247 (1981)

    Article  ADS  Google Scholar 

  13. J. Crange, The Magnetic Properties of Solids (Edward Arnold, London, 1977)

    Google Scholar 

  14. J. Li, Y. Huang, X.D. Liu, Y.Q. Lin, L. Bai, Q. Li, Sci. Tech. Adv. Mater. 8, 448 (2007)

    Article  Google Scholar 

  15. C. Xu, Y.Q. Ma, P.M. Hui, F.Q. Tong, Chin. Phys. Lett. 22, 485 (2005)

    Article  ADS  Google Scholar 

  16. P.J. Camp, G.N. Patey, Phys. Rev. E 62, 5403 (2000)

    Article  ADS  Google Scholar 

  17. S. Taketomi, R.V. Drew, Shull, J. Magn. Magn. Mater. 307, 77 (2006)

    Article  ADS  Google Scholar 

  18. A.Yu. Zubarev, L.Yu. Iskakova, Phys. Rev. E 65, 061406 (2002)

    Article  ADS  Google Scholar 

  19. B.H. Erné, K. Butter, B.W.M. Kuipers, G.J. Vroege, Langmuir 19, 8218 (2003)

    Article  Google Scholar 

  20. P. Jund, S.G. Kim, D. Tomanek, J. Hetherigton, Phys. Rev. Lett. 74, 3049 (1995)

    Article  ADS  Google Scholar 

  21. F. Kun, W.J. Wen, K.F. Pál, K.N. Tu, Phys. Rev. E 64, 061503 (2001)

    Article  ADS  Google Scholar 

  22. Z.W. Wang, C. Holm, Phys. Rev. E 68, 041401 (2003)

    Article  ADS  Google Scholar 

  23. J.P. Huang, Z.W. Wang, C. Holm, Phys. Rev. E 71, 061203 (2005)

    Article  ADS  Google Scholar 

  24. Q. Li, J. Li, X.M. Chen, S.N. Han, R.L. Gao, J. Exp. Nanosci. 3, 245 (2008)

    Article  Google Scholar 

  25. A.P. Gast, W.B. Russel, C.K. Hall, J. Colloid Interface Sci. 109, 161 (1986)

    Article  Google Scholar 

  26. J. Bibette, D. Roux, F. Nallet, Phys. Rev. Lett. 65, 2470 (1990)

    Article  ADS  Google Scholar 

  27. C. Holm, J.J. Weis, Curr. Opin. Colloid Interface Sci. 10, 133 (2005)

    Article  Google Scholar 

  28. V.M. Buzmakov, A.F. Pshenichnikov, J. Colloid Interface Sci. 182, 63 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S., Li, J., Gao, R. et al. The modification effect in magnetization behaviors for CoFe2O4–p-NiFe2O4 binary ferrofluids. Appl. Phys. A 98, 179 (2010). https://doi.org/10.1007/s00339-009-5447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-009-5447-0

PACS

Navigation