Skip to main content
Log in

Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have studied the plasma formation and ablation dynamics in fused silica upon irradiation with a single 120 fs laser pulse at 800 nm by using fs-resolved pump-probe microscope. It allows recording images of the laser-excited surface at different time delays after the arrival of the pump pulse. This way, we can extract both the temporal evolution of the surface reflectivity and transmission, at 400 nm, for different spatial positions in the spots (and thus for different local fluences) from single series of images. At fluences well above the visible ablation threshold, a fast and large increase of the reflectivity is induced by the formation of a dense free-electron plasma. The maximum reflectivity value is reached within ≈1.5 ps, while the normalized transmission decreases within ≈400 fs. The subsequent temporal evolution of both transient reflectivity and transmission are consistent with the occurrence of surface ablation. In addition, the time-resolved images reveal the existence of a free-electron plasma distribution surrounding the visible ablation crater and thus formed at local fluences below the ablation threshold. The lifetime of this sub-ablation plasma is ≈50 ps, and its maximum electron density amounts to 5.5×1022 cm−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lenzner, Int. J. Mod. Phys. B 13, 1559 (1999)

    Article  ADS  Google Scholar 

  2. K. Hirao, T. Mitsuyu, J. Si, J. Qiu (eds.), Active Glass for Photonic Devices (Springer, Berlin, 2001)

    Google Scholar 

  3. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994)

    Article  ADS  Google Scholar 

  4. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Phys. Rev. Lett. 82, 3883 (1999)

    Article  ADS  Google Scholar 

  5. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. Lett. 74, 2248 (1995)

    Article  ADS  Google Scholar 

  6. H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, E.E.B. Campbell, Appl. Phys. A: Mater. Sci. Process. 62, 293 (1996)

    Article  ADS  Google Scholar 

  7. T.Q. Jia, Z.Z. Xu, R.X. Li, D.H. Feng, X.X. Li, C.F. Cheng, H.Y. Sun, N.S. Xu, H.Z. Wang, J. Appl. Phys. 95, 5166 (2004)

    Article  ADS  Google Scholar 

  8. D. von der Linde, H. Schueler, J. Opt. Soc. Am. B 13, 2216 (1996)

    Article  Google Scholar 

  9. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, D. von der Linde, Proc. SPIE 3343, 46 (1998)

    Article  ADS  Google Scholar 

  10. I.H. Chowdhury, A.Q. Wu, X. Xu, A.M. Weiner, Appl. Phys. A: Mater. Sci. Process. 81, 1627 (2005)

    Article  ADS  Google Scholar 

  11. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyerter-Vehn, S.I. Anisimov, Phys. Rev. Lett. 81, 224 (1998)

    Article  ADS  Google Scholar 

  12. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, J. Bonse, Appl. Phys. Lett. 91, 082902 (2007)

    Article  ADS  Google Scholar 

  13. J. Bonse, G. Bachelier, J. Siegel, J. Solis, Phys. Rev. B 74, 134106 (2006)

    Article  ADS  Google Scholar 

  14. M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  15. J. Bonse, S.M. Wiggins, J. Solis, Appl. Phys. A: Mater. Sci. Process. 80, 243 (2005)

    Article  ADS  Google Scholar 

  16. S.-H. Cho, H. Kumagai, K. Midorikawa, Opt. Commun. 207, 243 (2002)

    Article  ADS  Google Scholar 

  17. A.Q. Wu, I.H. Chowdhury, X. Xu, Phys. Rev. B 72, 085128 (2005)

    Article  ADS  Google Scholar 

  18. E. Hecht, Optics (Addison-Wesley, Reading, 1998)

    Google Scholar 

  19. C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, P. Audebert, J. Quant. Spectrosc. Radiat. Transf. 65, 455 (2000)

    Article  ADS  Google Scholar 

  20. M.D. Feit, A.M. Komashko, A.M. Rubenchik, Appl. Phys. A 79, 1657 (2004)

    Article  ADS  Google Scholar 

  21. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996)

    Article  ADS  Google Scholar 

  22. P. Audebert, P. Daguzan, A.D. Santos, J.C. Gauthier, J.P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite et al., Phys. Rev. Lett. 73, 1990 (1994)

    Article  ADS  Google Scholar 

  23. Q. Sun, H. Jiang, Y. Li, Z. Wu, H. Yang, Q. Gong, Opt. Lett. 30, 320 (2005)

    Article  ADS  Google Scholar 

  24. S.S. Mao, F. Quéré, S. Guizard, X. Mao, R.E. Russo, G. Petite, P. Martin, Appl. Phys. A 79, 1695 (2004)

    Article  ADS  Google Scholar 

  25. D. von der Linde, K. Sokolowski-Tinten, J. Bialkowski, Appl. Surf. Sci. 109–110, 1 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Puerto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puerto, D., Gawelda, W., Siegel, J. et al. Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses. Appl. Phys. A 92, 803–808 (2008). https://doi.org/10.1007/s00339-008-4586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4586-z

PACS

Navigation