Skip to main content

Advertisement

Log in

Modeling of residual thermal effect in femtosecond laser ablation of metals: role of a gas environment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To describe the effect of significant enhancement in thermal energy retained in metal targets following femtosecond laser ablation in a gas environment, we develop a combined model based on both 2D thermal modeling of laser-induced target heating and dynamics of the ambient gas perturbed by multiphoton absorption of laser energy in close proximity to the target. Using our model, we find that thermal energy coupling to the sample is significantly enhanced due to laser-induced gas-dynamic motion in plasma. Another finding is that total thermal energy coupled to the sample due to gas-dynamic energy transfer and thermal energy conduction is close to that measured in our experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  2. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenröder, Spectrochim. Acta B 55, 1771 (2000)

    Article  ADS  Google Scholar 

  3. R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, R. Fortunier, Appl. Phys. Lett. 80, 3886 (2002)

    Article  ADS  Google Scholar 

  4. Q. Feng, Y.N. Picard, H. Liu, S.M. Yalisove, G. Mourou, T.M. Pollock, Scrip. Mater. 53, 511 (2005)

    Article  Google Scholar 

  5. A.Y. Vorobyev, C. Guo, Appl. Phys. Lett. 86, 011916 (2005)

    Article  ADS  Google Scholar 

  6. A.Y. Vorobyev, C. Guo, Opt. Express 14, 13113 (2006)

    Article  ADS  Google Scholar 

  7. A.Y. Vorobyev, V.M. Kuzmichev, N.G. Kokody, P. Kohns, J. Dai, C. Guo, Appl. Phys. A 82, 357 (2006)

    Article  ADS  Google Scholar 

  8. A.N. Pirri, R.G. Root, P.K.S. Wu, AIAA J. 16, 1296 (1978)

    Article  ADS  Google Scholar 

  9. J.A. McKay, R.D. Bleach, D.J. Nagel, J.T. Schriempf, R.B. Hall, C.R. Pond, S.K. Manlief, J. Appl. Phys. 50, 3231 (1979)

    Article  ADS  Google Scholar 

  10. G.W.C. Kaye, T.H. Laby, Tables of Physical and Chemical Constants, 11th edn. (Longmans, London, 1956)

    Google Scholar 

  11. A.I. Barchukov, F.V. Bunkin, V.I. Konov, A.M. Prokhorov, JETP Lett. 17, 294 (1973)

    ADS  Google Scholar 

  12. V.P. Ageev, A.I. Barchukov, F.V. Bunkin, V.I. Konov, S.B. Puzhaev, A.S. Silenok, N.I. Chapliev, Sov. J. Quantum Electron. 9, 43 (1979)

    Article  Google Scholar 

  13. A.V. Kabashin, P.I. Nikitin, W. Marine, M. Sentis, Quantum Electron. 28, 24 (1998)

    Article  Google Scholar 

  14. V.V. Appolonov, V.I. Konov, P.I. Nikitin, A.M. Prokhorov, A.S. Silenok, Sov. Tech. Phys. Lett. 11, 1034 (1985)

    Google Scholar 

  15. S.S. Mao, X. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 76, 31 (2000)

    Article  ADS  Google Scholar 

  16. S.M. Klimentov, T.V. Kononenko, P.A. Pivovarov, S.V. Garnov, V.I. Konov, A.M. Prokhorov, D. Breitling, F. Dausinger, Quantum Electron. 31, 378 (2001)

    Article  Google Scholar 

  17. W.Y. Baek, B. Grosswendt, J. Phys. B: At. Mol. Opt. Phys. 36, 731 (2003)

    Article  ADS  Google Scholar 

  18. T. Tabata, E. Shirai, M. Sataka, H. Kubo, At. Data Nucl. Data Tables 92, 375 (2006)

    Article  ADS  Google Scholar 

  19. C.L.M. Ireland, C. Grey Morgan, J. Phys. D: Appl. Phys. 6, 720 (1973)

    Article  ADS  Google Scholar 

  20. C.L.M. Ireland, C. Grey Morgan, J. Phys. D: Appl. Phys. 7, L87 (1974)

    Article  ADS  Google Scholar 

  21. A.E. Martirosyan, C. Altucci, A. Bruno, C. de Licio, A. Porzio, S. Solimeno, J. Appl. Phys. 96, 5450 (2004)

    Article  ADS  Google Scholar 

  22. I.S. Grigoryev, E.Z. Meilikhov, A.A. Radzig (eds.), Handbook of Physical Quantities (CRC Press, Boca Raton, 1995)

    Google Scholar 

  23. R.S. Hixson, M.A. Winkler, Int. J. Thermophys. 14, 409 (1993)

    Article  Google Scholar 

  24. S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A 61, 33 (1995)

    Article  ADS  Google Scholar 

  25. E.G. Gamaly, N.R. Madsen, M. Duering, A.V. Rode, V.Z. Kolev, B. Luther-Devies, Phys. Rev. B 71, 174405 (2005)

    Article  ADS  Google Scholar 

  26. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von der Linde, Appl. Surf. Sci. 127–129, 755 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Bulgakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulgakova, N.M., Zhukov, V.P., Vorobyev, A.Y. et al. Modeling of residual thermal effect in femtosecond laser ablation of metals: role of a gas environment. Appl. Phys. A 92, 883–889 (2008). https://doi.org/10.1007/s00339-008-4568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4568-1

PACS

Navigation