Skip to main content
Log in

Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline compound thin films of ZnO-TiO2 with different Zn/Ti atomic ratios were prepared by radio frequency magnetron reactive sputtering. The optical constants and the optical band gap were investigated using spectroscopic ellipsometry and the optical absorption spectrum. It was found that the cubic ZnTiO3 phase can be obtained with the atomic ratio of Zn to Ti of about 1:1, and transforms to rhombohedral ZnTiO3 phase and a phase mixture of rhombohedral ZnTiO3 and ZnO with increasing Zn content. The refractive index decreases with the increase of Zn content, and the extinction coefficient in the visible range is near zero. The optical band gap was derived from the modeling of ellipsometry data and extinction coefficient spectra, and compared with that obtained from optical absorption spectrum, and it was found that the optical band gaps obtained by these three methods are consistent with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ouerfelli, M. Regragui, M. Morsli, G. Djeteli, K. Jondo, C. Amory, G. Tchangbedji, K. Napo, J.C. Bernède, J. Phys. D Appl. Phys. 39, 1954 (2006)

    Article  ADS  Google Scholar 

  2. S. Das, S. Chakrabarti, S. Chaudhuri, J. Phys. D Appl. Phys. 38, 4021 (2005)

    Article  ADS  Google Scholar 

  3. R. Das, S. Ray, J. Phys. D Appl. Phys. 36, 152 (2003)

    Article  ADS  Google Scholar 

  4. X.S. Zhou, Y.H. Lin, B. Li, L.J. Li, J.P. Zhou, C.W. Nan, J. Phys. D Appl. Phys. 39, 558 (2006)

    Article  ADS  Google Scholar 

  5. P.M.R. Kumar, C.S. Katha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh, D.K. Avasthi, Semicond. Sci. Technol. 20, 120 (2005)

    Article  ADS  Google Scholar 

  6. A. Umar, S. Lee, Y.H. Im, Y.B. Hahn, Nanotechnology 16, 462 (2005)

    Article  Google Scholar 

  7. A. Dey, S. De, A. De, S.K. De, Nanotechnology 15, 1277 (2004)

    Article  ADS  Google Scholar 

  8. S.S. Lin, J.L. Huang, P. Sajgalik, Surf. Coat. Technol. 191, 286 (2005)

    Article  Google Scholar 

  9. Y.Q. Hou, D.M. Zhuang, G. Zhang, M. Zhao, M.S. Wu, Appl. Surf. Sci. 218, 97 (2003)

    Article  ADS  Google Scholar 

  10. H. Poelman, D. Poelman, D. Depla, H. Tomaszewski, L. Fiermans, R.D. Cryse, Surf. Sci. 482, 940 (2001)

    Article  ADS  Google Scholar 

  11. H.X. Gong, Y.Y. Wang, Z.J. Yan, Y.H. Yang, Mater. Sci. Semicond. Process. 5, 31 (2002)

    Article  ADS  Google Scholar 

  12. Z.F. Liu, Y.X. Li, F.K. Shan, Z.H. Xu, Y. Yu, Chin. Phys. Lett. 21, 747 (2004)

    Article  ADS  Google Scholar 

  13. J.S.C. Prentice, J. Phys. D Appl. Phys. 32, 2146 (1999)

    Article  ADS  Google Scholar 

  14. A.B.R. Kumar, S. Uthanna, B.S. Naidu, P.S. Reddy, J. Indian Inst. Sci. 81, 573 (2001)

    Google Scholar 

  15. R. Dannenberg, P. Greene, Thin Solid Films 360, 122 (2000)

    Article  ADS  Google Scholar 

  16. M. Vergohl, N. Malkomes, T. Staedler, T. Matthee, U. Richter, Thin Solid Films 351, 42 (1999)

    Article  ADS  Google Scholar 

  17. D. Franta, I. Ohlidal, Vaccum 80, 159 (2005)

    Google Scholar 

  18. F.H. Dulin, D.E. Rase, J. Am. Ceram. Soc. 43, 125 (1960)

    Article  Google Scholar 

  19. S.F. Bartram, R.A. Slepetys, J. Am. Ceram. Soc. 44, 493 (1961)

    Article  Google Scholar 

  20. S.F. Wang, M.K. Lu, F. Gu, C.F. Song, D. Xu, D.R. Yuan, G.J. Zhou, Y.X. Qi, Inorg. Chem. Commun. 6, 185 (2003)

    Article  Google Scholar 

  21. H.T. Kim, S. Nahm, J.D. Byun, J. Am. Ceram. Soc. 82, 3476 (1999)

    Article  Google Scholar 

  22. H. Obayashi, Y. Sakurai, T. Gejo, J. Solid State Chem. 17, 299 (1976)

    Article  ADS  Google Scholar 

  23. Z.M. Huang, Z.H. Zhang, C.P. Jiang, J. Yu, J.L. Sun, J.H. Chu, Appl. Phys. Lett. 77, 3651 (2000)

    Article  ADS  Google Scholar 

  24. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipies in Pascal (Cambridge University Press, Cambridge, 1990), Chapt. 14

  25. L.C. Sun, P. Hou, Thin Solid Films 455, 525 (2004)

    Article  ADS  Google Scholar 

  26. D.A.G. Bruggemann, Ann. Phys. 24, 636 (1935)

    Article  Google Scholar 

  27. Z.G. Hu, J.H. Ma, Z.M. Huang, Y.N. Wu, G.S. Wang, J.H. Chu, Appl. Phys. Lett. 83, 3686 (2003)

    Article  ADS  Google Scholar 

  28. Y.J. Cho, N.V. Nguyen, C.A. Richer, J.R. Ehrstein, B.H. Lee, J.C. Lee, Appl. Phys. Lett. 80, 1249 (2002)

    Article  ADS  Google Scholar 

  29. G. He, L.D. Zhang, G.H. Li, M. Liu, L.Q. Zhu, S.S. Pan, Appl. Phys. Lett. 86, 232901 (2005)

    Article  ADS  Google Scholar 

  30. F. Yakuphanoglu, M. Sekeyci, A. Balaban, Opt. Mater. 27, 1369 (2005)

    Article  ADS  Google Scholar 

  31. J. Rodríguez, M. Gómez, J. Ederth, G.A. Niklasson, C.G. Granqvist, Thin Solid Films 365, 119 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.H. Li.

Additional information

PACS

42.70.-a; 68.55.Jk; 78.20.Ci; 81.15.Cd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, C., Pan, S., Teng, X. et al. Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system. Appl. Phys. A 90, 375–378 (2008). https://doi.org/10.1007/s00339-007-4289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4289-x

Keywords

Navigation