Skip to main content
Log in

Magnetic nanowire arrays in anodic alumina membranes: Rutherford backscattering characterization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Systematic study of magnetic nanowire arrays grown in anodic alumina membranes (AAM) has been done by means of Rutherford backscattering spectroscopy (RBS). The AAM used as templates were morphologically characterized by using high resolution scanning electron microscopy (HRSEM), fast Fourier transform (FFT) and atomic force microscopy (AFM). The highly ordered templates with a mean pore diameter size of 30 nanometers, a mean inter-pore spacing of 100 nm and lengths ranging from 4 to 180 microns were obtained through two-steps anodization process, and the Ni and Co nanowire arrays were grown by electrodeposition techniques. The main attention is addressed to Ni nanowire arrays. RBS results allowed us to determine the real depth profile of atomic composition of the obtained nanowire arrays. In addition, the RBS spectra fitting showed that the porosity increased from the top to the bottom of the samples. Two phenomenological models are proposed to understand the apparition of that secondary porosity and a linear relation between the total amount of electrodeposited Ni and the electrodeposition time was obtained. As an example, it is also reported the relation between RBS results and magnetic properties, such as coercive field and remanence/saturation magnetization ratio of the samples. Particularly, for Ni nanowires arrays obtained by using voltage pulses, it is demonstrated that the larger the nanowires, the higher the definition for easy axis parallel to the nanowire length is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Possin: Rev. Sci. Instrum. 41, 772 (1970)

    Article  CAS  Google Scholar 

  2. H.P. Hsieh: In: New Membrane Materials and Processes for Separations, ed. by K.K. Sirkar, D.R. Lloyd (AlChE, New York 1988)

  3. C. Bourdillon, M. Majda: J. Am. Chem. Soc. 112, 1795 (1990)

    Article  CAS  Google Scholar 

  4. B. Ballarin, C.J. Brumlik, D.R. Lawson, W. Liang, L.S. van Dyke, C.R. Martin: Anal. Chem. 64, 2647 (1992)

    Article  CAS  Google Scholar 

  5. C. Liu, C.R. Martin: Nature 352, 50 (1991)

    Article  CAS  Google Scholar 

  6. C.R. Martin: Adv. Mater. 3, 457 (1991)

    Article  CAS  Google Scholar 

  7. H. Masuda, K. Fukuda: Science 268, 1466 (1995)

    CAS  Google Scholar 

  8. M. Nakao, S. Oku, T. Tamamura, K. Yasui, H. Masuda: Jpn. J. Appl. Phys. 38, 1052 (1999)

    Article  CAS  Google Scholar 

  9. J. Choi, K. Nielsch, M. Reiche, R.B. Wehrspohn, U. Gösele: J. Vac. Sci. Technol. B 21, 763 (2003)

    Article  CAS  Google Scholar 

  10. K. Nielsch, R. Hertel, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S.F. Fischer, H. Kronmüller: IEEE Trans. on Mag. 38, 2571 (2002)

    Article  CAS  Google Scholar 

  11. K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, S.F. Fischer, H. Kronmüller, T. Schweinböck, D. Weiss, U. Gösele: J. Mag. Mag. Mat. 249, 234 (2002)

    Article  CAS  Google Scholar 

  12. J. Bao, Q. Zhou, J. Hong, Z. Xu: Appl. Phys. Lett. 81, 4592 (2002)

    Article  CAS  Google Scholar 

  13. S.-Z. Chu, S. Inoue, K. Wada, D. Li, H. Haneda: J. Mater. Chem. 13, 866 (2003)

    Article  CAS  Google Scholar 

  14. J. Choi, R. Wehrspohn, U. Gösele: Adv. Mater. 15, 1531 (2003)

    Article  CAS  Google Scholar 

  15. H. Masuda, K. Kanezawa, M. Nakao, A. Yokoo, T. Tamamura, T. Sugiura, H. Minoura, K. Nishio: Adv. Mater. 15 2, 159 (2003)

    Article  CAS  Google Scholar 

  16. J.M. Thomas, W.J. Thomas: In: Principles and Practice of Heterogeneous Catalysis, Chapt. 3 (VCH Publishers, Germany, N.Y. 1997) p. 145

  17. E. Chason, T.M. Mayer: Crit. Rev. in Sol. St. Mat. Sci. 22, 1 (1997)

    CAS  Google Scholar 

  18. F. Pászti, E. Szilágyi, Z.E. Horváth, A. Manuaba, G. Battistig, Z. Hajnal, E. Vázsonyi: Nucl. Instr. Methods Phys. Res. B 136, 533 (1998)

    Google Scholar 

  19. A.C. Gâlca, E.S. Kooij, H. Wormeester, C. Sam, V. Leca, J.H. Rector, B. Poelsema: J. Appl. Phys. 94 7, 4296 (2003)

    Article  Google Scholar 

  20. F. Pászti, E. Szilágyi, A. Manuaba, G. Battistig: Nucl. Instr. Meth. B 161, 963 (2000)

    Google Scholar 

  21. E. Kótai: Nucl. Instr. Meth. B 85, 588 (1994)

    Google Scholar 

  22. K. Pirota, N. Navas, M. Hernández-Vélez, K. Nielsch, M. Vázquez: J. Alloys Compd. 369, 18 (2004)

    Article  CAS  Google Scholar 

  23. A. Climent-Font, F. Pászti, G. García, M.T. Fernández-Jiménez, F. Agulló: Nucl. Instr. Methods Phys. Res. B 219, 400 (2004)

    Google Scholar 

  24. G.E. Thompson, R.C. Furneaux, G.C. Wood: J. Corros. Sci. 18, 481 (1978)

    CAS  Google Scholar 

  25. R.C. Furneaux, W.R. Rigby, A.P. Davidson: Nature 337, 147 (1989); K. Nielsch, F. Müller, A.P. Li, U. Gösele: Adv. Mat. 12, 582 (2000)

    Article  CAS  Google Scholar 

  26. M. Vázquez, M. Hernández-Vélez, K. Pirota, A. Asenjo, D. Navas, J. Velázquez, P. Vargas, C. Ramos: Eur. Phys. J. B 40, 489 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hernández-Vélez.

Additional information

PACS

82.80.Yc; 81.16-c; 75.75.+a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Vélez, M., Pirota, K., Pászti, F. et al. Magnetic nanowire arrays in anodic alumina membranes: Rutherford backscattering characterization. Appl. Phys. A 80, 1701–1706 (2005). https://doi.org/10.1007/s00339-005-3234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3234-0

Keywords

Navigation