Skip to main content
Log in

Exploration of the ultimate patterning potential achievable with high resolution focused ion beams

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Controlled and reproducible fabrication of nano-structured materials will be one of the main industrial challenges in the next few years. We have recently proposed exploitation of the nano-structuring potential of a high resolution Focused Ion Beam Tool, to overcome basic limitations of current nano-fabrication techniques. The aim of this article is to present some new routes for material patterning, which benefit from ion-induced local property modifications or damage. In the experiments we describe hereafter an ultra-sharp pencil of 30 keV gallium ions is used to tailor the characteristics of several materials at a scale of a few nanometres. The experimental results are then compared to simulations. First, we simulate the control of collisional defects generated in a thin magnetic layer under FIB irradiation. The results explain the stable magnetic structures we have obtained experimentally. This was achieved with a low surface ion dose (1012 to 1014 ions/cm2). In addition we have explored the promising direction of “Bottom-up” or “self-organization” processes using a FIB instrument. We have defined artificial surface defects. These defects created by the impact of an 8-nm FWHM probe were used to pin the diffusion and to organize nanometre-sized gold clusters on a graphite surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Matsui, Y. Ochiai: Nanotechnology 7, 247 (1996)

    Article  ADS  Google Scholar 

  2. J. Orloff: Rev. Sci. Instrum. 64(5), 1105 (1993)

    Article  Google Scholar 

  3. J. Lohau, A. Moser, C.T. Rettner, M.E. Best, B.D. Terris: Appl. Phys. Lett. 78, 990 (2001)

    Article  ADS  Google Scholar 

  4. A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, G.L. Snider: Science 277, 928 (1997)

    Article  Google Scholar 

  5. S. Sun, C.B. Murray, D. Weller, L. Folsk, A. Moser: Science 287, 1989 (2000)

    Article  ADS  Google Scholar 

  6. R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reifenberger: Science 272, 1323 (1996)

    Article  ADS  Google Scholar 

  7. M. Negrier, J. Tuaillon-Combes, V. Dupuis, A. Perez, M. Pellarin, M. Broyer : Eur. Phys. J. D9, 475 (2000)

  8. http://www.cordis.lu/nanotechnology/

  9. J. Gierak, A. Septier, C. Vieu: Nucl. Instrum. Methods A 427, 91 (1999)

    Article  ADS  Google Scholar 

  10. E. Munro: In Image Processing and Computer-aided Design in Electron Optics, ed. by P.W. Hawkes (Academic Press, London & New York 1973)

  11. B. Lencova: In Handbook of Charged particle Optics, ed. by J. Orloff (CRC Press 1997)

  12. J. Gierak, C. Vieu, M. Schneider, H. Launois, G. Ben Assayag, A. Septier: J. Vac. Sci. Technol. B 15, 2373 (1997)

    Article  Google Scholar 

  13. N. Rau, F. Stratton, C. Fields, T. Ogawa, A. Neureuther, R. Kubena, G. Willson : J. Vac. Sci. Technol. B 16, 3784 (1998)

    Article  Google Scholar 

  14. C. Chappert, H. Bernas, J. Ferré, V. Kottler, J.P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, H. Launois: Science 280, 1919 (1998)

    Article  ADS  Google Scholar 

  15. T. Aign, P. Meyer, S. Lemerle, J.P. Jamet, V. Mathet, C. Chappert, J. Gierak , C. Vieu, F. Rousseaux, H. Launois, H. Bernas: Phys. Rev. Lett. 81, 5656 (1998)

    Article  ADS  Google Scholar 

  16. R. Hyndman, P. Warin, J. Gierak, J. Ferré, J.N. Chapman, J.P. Jamet, V. Mathet , C. Chappert: J. Appl. Phys. 90, 3843 (2001); P. Warin, R. Hyndman, J. Gierak, J.N. Chapman, J. Ferré, J.P. Jamet, V. Mathet, C. Chappert: J. Appl. Phys. 90, 3850 (2001)

    Article  ADS  Google Scholar 

  17. A. Perez, P. Mélinon, V. Dupuis, B. Prével, L. Bardotti, J. Tuaillon-Combes, B. Masenelli, M. Treilleux, M. Pellarin, J. Lermé, E. Cottancin, M. Broyer, M. Jamet, M. Négrier, F. Tournus, M. Gaudry: Mater. Trans. 42, 1460 (2001)

    Article  Google Scholar 

  18. L. Bardotti, B. Prevel, M. Treilleux, P. Mélinon, A. Perez: Appl. Surf. Sci. 164, 52 (2000)

    Article  ADS  Google Scholar 

  19. L. Bardotti, P. Jensen, A. Hoareau, M. Treilleux, B. Cabaud: Phys. Rev. Lett. 74(23), 4694 (1995)

    Article  Google Scholar 

  20. C. Vieu, J. Gierak, M. Schneider, G. Ben Assayag, J.Y. Marzin: J. Vac. Sci. Technol. B 16, 1919 (1998)

    Article  Google Scholar 

  21. J. Ziegler: www.srim.org

  22. C. Vieu, G. Ben Assayag, J. Gierak: Nucl. Instrum. Meth. Phys. Res., Sect. B 93, 439 (1994)

    Article  ADS  Google Scholar 

  23. C. Vieu, J. Gierak, H. launois, T. Aign, P. Meyer, J.P. Jame, J. Ferré, C. Chappert, T. Devolder, V. Mathet, H. Bernas: J. Appl. Phys. 91, 3103 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gierak.

Additional information

PACS

79.20.Rf; 81.07.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gierak, J., Mailly, D., Hawkes, P. et al. Exploration of the ultimate patterning potential achievable with high resolution focused ion beams. Appl. Phys. A 80, 187–194 (2005). https://doi.org/10.1007/s00339-004-2551-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2551-z

Keywords

Navigation