Skip to main content
Log in

Computational detection of deleterious SNPs and their effect on sequence and structural level of the VHL gene

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

In this work we have analyzed the genetic variation that can alter the expression and the function of the VHL gene using computational methods. Of 110 single nucleotide polymorphisms (SNPs), 33 were found to be nonsynonymous (nsSNPs) and 23 SNPs were found in untranslated regions. Of the 33 nsSNPs investigated, 36.3% were found to be deleterious by both SIFT and PolyPhen servers. An untranslated region (UTR) resource tool suggested that two SNPs in the 5′ UTR region and six SNPs in the 3′ UTR region might change the protein expression levels. It was found by both SIFT and PolyPhen servers that a mutation from histidine to arginine at position 115 of the native protein of the VHL gene was most deleterious. A structural analysis of this mutated protein and the native protein was performed and had a root mean square deviation (RMSD) of 2.78 Å. Based on this work, we propose that the nsSNP with a SNPid of rs5030812 is an important candidate for the cause of von Hippel–Lindau syndrome via the VHL gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott MA, Nathanson KL, Nightingale S, Maher ER, Greenstein RM (2006) The von Hippel–Lindau (VHL) germline mutation V84L manifests as early-onset bilateral pheochromocytoma. Am J Med Genet A 140:685–690

    PubMed  Google Scholar 

  • Bradley JF, Collins DL, Schimke RN, Parrott HN, Rothberg PG (1999) Two distinct phenotypes caused by two different missense mutations in the same codon of the VHL gene. Am J Med Genet 87:163–167

    Article  PubMed  CAS  Google Scholar 

  • Cavallo A, Martin AC (2005) Mapping SNPs to protein sequence and structure data. Bioinformatics 21(8):1443–1450

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Kishida T, Yao M, Hustad T, Glavac D et al (1995) Germline mutations in the von Hippel–Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat 5:66–75

    Article  PubMed  CAS  Google Scholar 

  • Collins FS, Brooks LD (1998) A DNA polymorphism discovery resource for research on human genetic variations. Genomic Res 8:1229–1231

    CAS  Google Scholar 

  • Crossey PA, Richards FM, Foster K, Green JS, Prowse A et al (1994) Identification of intragenic mutations in the von Hippel–Lindau disease tumour suppressor gene and correlation with disease phenotype. Hum Mol Genet 3:1303–1308

    Article  PubMed  CAS  Google Scholar 

  • Crossey PA, Eng C, Ginalska-Malinowska M, Lennard TWJ, Wheeler DC et al (1995) Molecular genetic diagnosis of von Hippel–Lindau disease in familial phaeochromocytoma. J Med Genet 32:885–886

    Article  PubMed  CAS  Google Scholar 

  • Delarue M, Dumas P (2004) On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc Natl Acad Sci USA 101:6957–6962

    Article  PubMed  CAS  Google Scholar 

  • Duan DR, Humphrey JS, Chen DYT, Weng Y, Sukegawa J et al (1995a) Characterization of the VHL tumor suppressor gene product: localization, complex formation, and the effect of natural inactivating mutations. Proc Natl Acad Sci USA 92:6495–6499

    Article  Google Scholar 

  • Duan DR, Pause A, Burgress W, Aso T, Chen DYT et al (1995b) Inhibition of transcriptional elongation by the VHL tumor suppressor protein. Science 269:1402–1406

    Article  PubMed  CAS  Google Scholar 

  • Eng C, Crossey PA, Mulligan LM, Healey CS, Houghton C et al (1995) Mutations in the RET proto-oncogene and the von Hippel–Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. J Med Genet 32:934–937

    Article  PubMed  CAS  Google Scholar 

  • Gallou C, Joly D, Mejean A, Staroz F, Martin N et al (1999) Mutations of the VHL gene in sporadic renal cell carcinoma: definition of a risk factor for VHL patients to develop an RCC. Hum Mutat 13:464–475

    Article  PubMed  CAS  Google Scholar 

  • George Priya Doss C, Sudandiradoss C, Rajasekaran R, Purohit R, Ramanathan K et al (2007) Identification and structural comparison of deleterious mutations in nsSNPs of ABL1 gene in chronic myeloid leukemia: a bio-informatics study. J Biomed Inform 41:607–612

    Article  PubMed  CAS  Google Scholar 

  • Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH et al (1994) Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 7:85–89

    Article  PubMed  CAS  Google Scholar 

  • Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158

    Article  PubMed  CAS  Google Scholar 

  • Han JH, Kerrison N, Chothia C, Teichmann SA (2006) Divergence of interdomain geometry in two-domain proteins. Structure 14(5):935–945

    Article  PubMed  CAS  Google Scholar 

  • Herman JG, Latif F, Weng Y, Lerman MI, Zbar B et al (1994) Silencing of the VHL tumor suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91:9700–9704

    Article  PubMed  CAS  Google Scholar 

  • Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ et al (2002) Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417(6892):975–978

    Article  PubMed  CAS  Google Scholar 

  • Iliopoulos O, Kibel A, Gray S, Kaelin WG (1995) Tumor suppression by the human von Hippel–Lindau gene product. Nat Med 1:822–826

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2:673–682

    Article  PubMed  CAS  Google Scholar 

  • Kanno H, Kondo K, Ito S, Yamamoto I, Fujii S et al (1994) Somatic mutations of the von Hippel–Lindau tumor suppressor gene in sporadic central nervous system hemangioblastomas. Cancer Res 54:4845–4847

    PubMed  CAS  Google Scholar 

  • Kibel A, Iliopoulos O, DeCaprio JD, Kaelin WG (1995) Binding of the von Hippel–Lindau tumor suppressor protein to elongin B and C. Science 269:1444–1446

    Article  PubMed  CAS  Google Scholar 

  • Kishida T, Stackhouse TM, Chen F, Lerman MI, Zbar B (1995) Cellular proteins that bind the von Hippel–Lindau disease gene product: mapping of binding domains and the effect of missense mutations. Cancer Res 55:4544–4548

    PubMed  CAS  Google Scholar 

  • Kondo K, Sakai N, Kaneko S, Kobayashi K, Hosaka M et al (1995) Germline mutations in the von Hippel–Lindau disease (VHL) gene in Japanese VHL. Clinical Research Group for VHL in Japan. Hum Mol Genet 4:2233–2237

    Article  Google Scholar 

  • Kuehn EW, Walz G, Benzing T (2007) Von Hippel–Lindau: a tumor suppressor links microtubules to ciliogenesis and cancer development. Cancer Res 67(10):4537–4540

    Article  PubMed  CAS  Google Scholar 

  • Lander ES (1996) The new genomics: global views of biology. Science 274:536–539

    Article  PubMed  CAS  Google Scholar 

  • Latif F, Tory K, Gnarra J, Yao M, Duh FM et al (1993) Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 260:1317–1320

    Article  PubMed  CAS  Google Scholar 

  • Li C, Weber G, Ekman P, Lagercrantz J, Norlen BJ et al (1998) Germline mutations detected in the von Hippel–Lindau disease tumor suppressor gene by Southern blot and direct genomic DNA sequencing. Hum Mutat Suppl 1:S31–S33

    Google Scholar 

  • Lindahl E, Azuara C, Koehl P, Delarue M (2006) NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res 34:W52–W56

    Article  PubMed  CAS  Google Scholar 

  • Linehan WM, Lerman MI, Zbar B (1995) Identification of the von Hippel–Lindau (VHL) gene: its role in renal cancer. JAMA 273:564–570

    Article  PubMed  CAS  Google Scholar 

  • Magyar C, Gromiha MM, Pujadas G, Tusnády GE, Simon I (2005) SRide: a server for identifying stabilizing residues in proteins. Nucleic Acids Res 33:W303–W305

    Article  PubMed  CAS  Google Scholar 

  • Maher ER, Kaelin WG Jr (1997) Von Hippel–Lindau disease. Medicine (Baltimore) 76:381–391

    Article  CAS  Google Scholar 

  • Maher ER, Iselius L, Yates JR, Littler M, Benjamin C et al (1991) Von Hippel–Lindau disease: a genetic study. J Med Genet 28:443–447

    Article  PubMed  CAS  Google Scholar 

  • Maher ER, Webster AR, Richards FM, Green JS, Crossey PA et al (1996) Phenotypic expression in von Hippel–Lindau disease: correlations with germline VHL gene mutations. J Med Genet 33:328–332

    Article  PubMed  CAS  Google Scholar 

  • Mandich P, Montera M, Bellone E, Trojani A, Daniele S et al (1998) Three novel mutations in the von Hippel–Lindau tumour suppressor gene in Italian patients. Hum Mutat Suppl 1:S268–S270

    Google Scholar 

  • Martin R, Hockey A, Walpole I, Goldblatt J (1998) Variable penetrance of familial pheochromocytoma associated with the von Hippel–Lindau gene mutation, S68 W. Hum Mutat 12:71–71

    Article  PubMed  CAS  Google Scholar 

  • Neumann HPH, Bausch B, McWhinney SR, Bender BU, Gimm O et al (2002) Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346:1459–1466

    Article  PubMed  CAS  Google Scholar 

  • Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    Article  PubMed  CAS  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  PubMed  CAS  Google Scholar 

  • Nowak R (1994) Mining treasures from ‘junk DNA’. Science 263:608–610

    Article  PubMed  CAS  Google Scholar 

  • Olschwang S, Richard S, Boisson C, Giraud S, Laurent-Puig P et al (1998) Germline mutation profile of the VHL gene in von Hippel–Lindau disease and in sporadic hemangioblastoma. Hum Mutat 12:424–430

    Article  PubMed  CAS  Google Scholar 

  • Pastore YD, Jedlickova K, Guan Y, Liu E, Fahner J et al (2003a) Mutations of von Hippel–Lindau tumor-suppressor gene and congenital polycythemia. Am J Hum Genet 73:412–419

    Article  PubMed  CAS  Google Scholar 

  • Pastore YD, Jelinek J, Ang S, Guan Y, Liu E et al (2003b) Mutations in the VHL gene in sporadic apparently congenital polycythemia. Blood 101:1591–1595

    Article  PubMed  CAS  Google Scholar 

  • Pesole G, Liuni S (1999) Internet resources for the functional analysis of 5′ and 3′ untranslated regions of eukaryotic mRNA. Trends Genet 15(9):378

    Article  PubMed  CAS  Google Scholar 

  • Pesole G, Liuni S, Grillo G, Licciulli F, Mignone F et al (2002) UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 30:335–340

    Article  PubMed  CAS  Google Scholar 

  • Prokunina I, Alarcn-Riquelme ME (2004) Regulatory SNPs in complex diseases: their identification and functional validation. Expert Rev Mol Med 6:1–15

    Article  PubMed  Google Scholar 

  • Prowse A, Webster A, Richards F, Richard S, Olschwang S et al (1997) Somatic inactivation of the VHL gene in von Hippel–Lindau disease tumors. Am J Hum Genet 60:765–771

    PubMed  CAS  Google Scholar 

  • Rajasekaran R, Sudandiradoss C, Doss CG, Sethumadhavan R (2007) Identification and in silico analysis of functional SNPs of the BRCA1 gene. Genomics 90(4):447–452

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran R, George Priya Doss C, Sudandiradoss C, Ramanathan K, Purohit R, Sethumadhavan R (2008) Effect of deleterious nsSNP on HER2 receptor based on stability and binding affinity with herceptin: a computational approach. C R Biol 331:409–417

    Article  PubMed  CAS  Google Scholar 

  • Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–3900

    Article  PubMed  CAS  Google Scholar 

  • Sekido Y, Bader S, Latif F, Gnarra JR, Gazdar AF et al (1994) Molecular analysis of the von Hippel–Lindau disease tumor suppressor gene in human lung cancer cell lines. Oncogene 9:1599–1604

    PubMed  CAS  Google Scholar 

  • Sherry ST, Ward MH, Kholodov M, Baker J, Phan L et al (2001) dbSNP: The NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N (1994) mRNA translation: influence of the 5′ and 3′ untranslated regions. Curr Opin Genet 4(2):310–315

    Article  CAS  Google Scholar 

  • Stolle C, Glenn G, Zbar B, Humphrey JS, Choyke P et al (1998) Improved detection of germline mutations in the von Hippel–Lindau disease tumor suppressor gene. Hum Mutat 12:417–423

    Article  PubMed  CAS  Google Scholar 

  • Tory K, Brauch H, Linehan M, Barba D, Oldfield E et al (1989) Specific genetic change in tumors associated with von Hippel–Lindau disease. J Natl Cancer Inst 81:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Van der Harst E, de Krijger RR, Dinjens WNM, Weeks LE, Bonjer HJ et al (1998) Germline mutations in the vhl gene in patients presenting with phaeochromocytomas. Int J Cancer 77:337–340

    Article  PubMed  Google Scholar 

  • Varfolomeev SD, Uporov IV (2002) Bioinformatics and molecular modeling in chemical enzymology. Active sites of hydrolases. Biochemistry (Mosc) 67(10):1099–1108

    Article  CAS  Google Scholar 

  • Wiesener MS, Seyfarth M, Warnecke C, Juergensen JS, Rosenberger C et al (2002) Paraneoplastic erythrocytosis associated with an inactivating point mutation of the von Hippel–Lindau gene in a renal cell carcinoma. Blood 99:3562–3565

    Article  PubMed  CAS  Google Scholar 

  • Zbar B, Kishida T, Chen F, Schmidt L, Maher ER et al (1996) Germline mutations in the von Hippel–Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat 8:348–357

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the management of the Vellore Institute of Technology University for providing the facilities to carry out this work. The authors thank the reviewers for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao Sethumadhavan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajasekaran, R., Sudandiradoss, C., George Priya Doss, C. et al. Computational detection of deleterious SNPs and their effect on sequence and structural level of the VHL gene. Mamm Genome 19, 654–661 (2008). https://doi.org/10.1007/s00335-008-9143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9143-8

Keywords

Navigation