Skip to main content
Log in

Candidate genes and their regulatory elements: alcohol preference and tolerance

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

QTL analysis of behavioral traits and mouse brain gene expression studies were combined to identify candidate genes involved in the traits of alcohol preference and acute functional alcohol tolerance. The systematic application of normalization and statistical analysis of differential gene expression, behavioral and expression QTL location, and informatics methodologies resulted in identification of 8 candidate genes for the trait of alcohol preference and 22 candidate genes for acute functional tolerance. Pathway analysis, combined with clustering by ontology, indicated the importance of transcriptional regulation and DNA and protein binding elements in the acute functional tolerance trait, and protein kinases and intracellular signal transduction elements in the alcohol preference trait. A rudimentary search for transcription control elements that could indicate coregulation of the panels of candidate genes produced modest results, implicating SMAD-3 in the regulation of four of the eight candidate genes for alcohol preference. However, the realization of the many caveats related to transcription factor binding site analysis, and attempts to correlate between transcription factor binding and function, forestalled any definitive global analysis of transcriptional control of differentially expressed candidate genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Affymetrix (2001) Statistical algorithms reference guide (Santa Clara, CA: Affymetrix, Inc.)

    Google Scholar 

  • Affymetrix (2004) GeneChip ® expression analysis. Data analysis fundamentals (Santa Clara, CA: Affymetrix, Inc.)

    Google Scholar 

  • Backström P, Hyytia P (2004) Ionotropic glutamate receptor antagonists modulate cue-induced reinstatement of ethanol-seeking behavior. Alcohol Clin Exp Res 28:558–565

    Article  PubMed  CAS  Google Scholar 

  • Behm A, Lumeng L, Li T-K, Grahame N (2003) Selective breeding for replicate line 2 high and low alcohol preferring mice. Alcohol Clin Exp Res 27:49A

    Google Scholar 

  • Belknap JK, Atkins AL (2001) The replicability of QTLs for murine alcohol preference drinking behavior across eight independent studies. Mamm Genome 12:893–899

    Article  CAS  PubMed  Google Scholar 

  • Bice PJ, Foroud T, Carr LG, Zhang L, Liu L, et al. (2006) Identification of QTLs influencing alcohol preference in the high alcohol preferring (HAP) and low alcohol preferring (LAP) mouse lines. Behav Genet 36, 248–260

    Article  PubMed  Google Scholar 

  • Boehm SL 2nd, Peden L, Chang R, Harris RA, Blednov YA (2003) Deletion of the fyn-kinase gene alters behavioral sensitivity to ethanol. Alcohol Clin Exp Res 27:1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Nolan T (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 15:155–166

    PubMed  PubMed Central  Google Scholar 

  • Carlborg O, De Koning DJ, Manly KF, Chesler E, Williams RW, et al. (2005) Methodological aspects of the genetic dissection of gene expression. Bioinformatics 21:2383–2393

    Article  CAS  PubMed  Google Scholar 

  • Chesler EJ, Lu L, Shou S, Qu Y, Gu J, et al. (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37:233–242

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, et al. (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Crabbe JC, Phillips TJ, Feller DJ, Hen R, Wenger CD, et al. (1996) Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat Genet 14:98–101

    Article  CAS  PubMed  Google Scholar 

  • Culverhouse R, Klein T, Shannon W (2004) Detecting epistatic interactions contributing to quantitative traits. Genet Epidemiol 27:141–152

    Article  PubMed  Google Scholar 

  • Draghici S, Khatri P, Bhavsar P, Shah A, Krawetz SA, et al. (2003) Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Nucleic Acids Res 31:3775–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudoit S, Yang YH, Callow MJ, Speed TP (2000) Statistical methods for identifying differentially expressed genes in replicate cDNA microarray experiments. Available at http://www.stat.berkeley.edu/users/terry/zarray/TechReport/578.pdf

  • Eaves IA, Wicker LS, Ghandour G, Lyons PA, Peterson LB, et al. (2002) Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of type 1 diabetes. Genome Res 12:232–243

    Article  CAS  PubMed  Google Scholar 

  • Erwin VG, Deitrich RA (1996) Genetic selection and characterization of mouse lines for acute functional tolerance to ethanol. J Pharmacol Exp Ther 279:1310–1317

    CAS  PubMed  Google Scholar 

  • Falconer DS (1996) Introduction to Quantitative Genetics (Essex, UK: Longman)

    Google Scholar 

  • Georges M, Drinkwater R, King T, Mishra A, Moore SS, et al. (1993) Microsatellite mapping of a gene affecting horn development in Bos taurus. Nat Genet 4:206–210

    Article  CAS  PubMed  Google Scholar 

  • Grahame NJ, Li TK, Lumeng L (1999) Selective breeding for high and low alcohol preference in mice. Behav Genet 29:47–57

    Article  CAS  PubMed  Google Scholar 

  • Heinemeyer T, Chen X, Karas H, Kel AE, Kel OV, et al. (1999) Expanding the TRANSFAC database towards an expert system of regulatory molecular mechanisms. Nucleic Acids Res 27:318–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensler JG, Ladenheim EE, Lyons WE (2003) Ethanol consumption and serotonin-1A (5-HT1A) receptor function in heterozygous BDNF (±) mice. J Neurochem 85:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, et al. (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses. Alcohol Clin Exp Res 28:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Hodge CW, Slawecki CJ, Aiken AS (1996) Norepinephrine and serotonin receptors in the paraventricular nucleus interactively modulate ethanol consumption. Alcohol Clin Exp Res 20:1669–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Chang V, Capper AB, Taussig R, Gautam N (2001) G protein beta subunit types differentially interact with a muscarinic receptor but not adenylyl cyclase type II or phospholipase C-beta 2/3. J Biol Chem 276:19982–19988

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Jurka J (1994) Approaches to identification and analysis of interspersed repetitive DNA sequences. In Automated DNA Sequencing and Analysis, Adams MD, Fields C, Venter JC (eds) (San Diego, CA: Academic Press), pp 294–298

    Google Scholar 

  • Jurka J (1998) Repeats in genomic DNA: mining and meaning. Curr Opin Struct Biol 8:333–337

    Article  CAS  PubMed  Google Scholar 

  • Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, et al. (2003) MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31:3576–3579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirstein SL, Davidson KL, Ehringer MA, Sikela JM, Erwin VG, et al. (2002) Quantitative trait loci affecting initial sensitivity and acute functional tolerance to ethanol-induced ataxia and brain cAMP signaling in BXD recombinant inbred mice. J Pharmacol Exp Ther 302:1238–1245

    Article  CAS  PubMed  Google Scholar 

  • Kitanaka N, Kitanaka J, Walther D, Wang XB, Uhl GR (2003) Comparative inter-strain sequence analysis of the putative regulatory region of murine psychostimulant-regulated gene GNB1 (G protein beta 1 subunit gene). DNA Seq 14:257–263

    Article  CAS  PubMed  Google Scholar 

  • Klingenhoff A, Frech K, Quandt K, Werner T (1999) Functional promoter modules can be detected by formal models independent of overall nucleotide sequence similarity. Bioinformatics 15:180–186

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang T, Habegger K, Spence JP, Foroud T, Ellison JA, et al. (2004) Glutathione S-transferase 8-8 expression is lower in alcohol-preferring than in alcohol-nonpreferring rats. Alcohol Clin Exp Res 28:1622–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Wu Y, Sousa N, Almeida OF (2005) SMAD pathway mediation of BDNF and TGF beta 2 regulation of proliferation and differentiation of hippocampal granule neurons. Development 132:3231–3242

    Article  CAS  PubMed  Google Scholar 

  • Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, et al. (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31:37437–37438

    Article  CAS  Google Scholar 

  • McClearn GE, Wilson JR, Meredith W (1970) The use of isogenic and heterogenic mouse stocks in behavioral research. In Contributions to Behavior-Genetic Analysis: The Mouse As a Prototype, Lindzey G, Thiessen DD. (eds) (New York: Appleton–Century–Crofts), pp 3–22

    Google Scholar 

  • Miyakawa T, Yagi T, Kitazawa H, Yasuda M, Kawai N, et al. (1997) Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function. Science 278:698–701

    Article  CAS  PubMed  Google Scholar 

  • Newlin DB, Thomson JB ( 1990) Alcohol challenge with sons of alcoholics: a critical review and analysis. Psychol Bull 108:383–402

    Article  CAS  PubMed  Google Scholar 

  • Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 19:2155–2157

    Article  CAS  PubMed  Google Scholar 

  • Qiu P (2003) Recent advances in computational promoter analysis in understanding the transcriptional regulatory network. Biochem Biophys Res Commun 309:495–501

    Article  CAS  PubMed  Google Scholar 

  • Roberts AJ, McDonald JS, Heyser CJ, Kieffer BL, Matthes HW, et al. (2000) mu-Opioid receptor knockout mice do not self-administer alcohol. J Pharmacol Exp Ther 293:1002–1008

    CAS  PubMed  Google Scholar 

  • Rockett JC, Hellmann GM (2004) Confirming microarray data–is it really necessary? Genomics 83:541–549

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez LA, Plomin R, Blizard DA, Jones BC, McClearn GE (1994) Alcohol acceptance, preference, and sensitivity in mice. I. Quantitative genetic analysis using BXD recombinant inbred strains. Alcohol Clin Exp Res 18:1416–1422

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, et al. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  CAS  PubMed  Google Scholar 

  • Spanagel R (2003) Alcohol addiction research: from animal models to clinics. Best Pract Res Clin Gastroenterol 17:507–518

    Article  PubMed  Google Scholar 

  • Tabakoff B, Bhave SV, Hoffman PL (2003) Selective breeding, quantitative trait locus analysis, and gene arrays identify candidate genes for complex drug-related behaviors. J Neurosci 23:4491–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Miyazaki I, Fujita N, Haque ME, Asanuma M, et al. (2001) Molecular mechanism in activation of glutathione system by ropinirole, a selective dopamine D2 agonist. Neurochem Res 26:31–36

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Yoshioka M, Miyazaki I, Fujita N, Ogawa N (2002) GPI1046 prevents dopaminergic dysfunction by activating glutathione system in the mouse striatum. Neurosci Lett 321:45–48

    Article  CAS  PubMed  Google Scholar 

  • Thanos PK, Taintor NB, Rivera SN, Umegaki H, Ikari H, et al. (2004) DRD2 gene transfer into the nucleus accumbens core of the alcohol preferring and nonpreferring rats attenuates alcohol drinking. Alcohol Clin Exp Res 28:720–728

    Article  CAS  PubMed  Google Scholar 

  • The FANTOM Consortium and RIKEN Genome Exploration Research Group and Genome Science Group (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  Google Scholar 

  • Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Article  Google Scholar 

  • Traynor JR, Neubig RR (2005) Regulators of G protein signaling & drugs of abuse. Mol Interv 5:30–41

    Article  CAS  PubMed  Google Scholar 

  • Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson CL, Miller CJ (2005) Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics 21:3683–3685

    Article  CAS  PubMed  Google Scholar 

  • Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75–85

    Article  CAS  PubMed  Google Scholar 

  • Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Institute on Alcohol Abuse and Alcoholism and particularly the Integrative Neuroscience Initiative on Alcoholism; Lohocla Research Corporation and the Banbury Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Tabakoff.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saba, L., Bhave, S.V., Grahame, N. et al. Candidate genes and their regulatory elements: alcohol preference and tolerance. Mamm Genome 17, 669–688 (2006). https://doi.org/10.1007/s00335-005-0190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0190-0

Keywords

Navigation