Skip to main content

Advertisement

Log in

Gene expression and gene therapy imaging

  • Molecular Imaging
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672

    Article  PubMed  CAS  Google Scholar 

  2. Wunderbaldinger P, Bogdanov A, Weissleder R (2000) New approaches for imaging in gene therapy. Eur J Radiol 34:156–165

    Article  PubMed  CAS  Google Scholar 

  3. Bogdanov AA Jr., Simonova M, Weissleder R (2000) Engineering membrane proteins for nuclear medicine: applications for gene therapy and cell tracking. Q J Nucl Med 44:224–235

    PubMed  Google Scholar 

  4. Reader AJ, Zweit J (2001) Developments in whole-body molecular imaging of live subjects. Trends Pharmacol Sci 22:604–607

    Article  PubMed  CAS  Google Scholar 

  5. Jacobs AH, Dittmar C, Winkeler A, Garlip G, Heiss WD (2002) Molecular imaging of gliomas. Mol Imaging 1:309–335

    Article  PubMed  CAS  Google Scholar 

  6. Shah K, Jacobs A, Breakefield XO, Weissleder R (2004) Molecular imaging of gene therapy for cancer. Gene Ther 11:1175–1187

    Article  PubMed  CAS  Google Scholar 

  7. van Roessel P, Brand AH (2002) Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nat Cell Biol 4:E15–E20

    Article  PubMed  CAS  Google Scholar 

  8. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  PubMed  CAS  Google Scholar 

  9. Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, Benaron DA (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66:523–531

    PubMed  CAS  Google Scholar 

  10. Turnbull DH, Ramsay JA, Shivji GS, Bloomfield TS, From L, Sauder DN, Foster FS (1996) Ultrasound backscatter microscope analysis of mouse melanoma progression. Ultrasound Med Biol 22:845–853

    Article  PubMed  CAS  Google Scholar 

  11. Turnbull DH, Bloomfield TS, Baldwin HS, Foster FS, Joyner AL (1995) Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc Natl Acad Sci U S A 92:2239–2243

    Article  PubMed  CAS  Google Scholar 

  12. Hildebrandt IJ, Gambhir SS (2004) Molecular imaging applications for immunology. Clin Immunol 111:210–224

    Article  PubMed  CAS  Google Scholar 

  13. Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2:11–18

    Article  PubMed  CAS  Google Scholar 

  14. Liang HD, Blomley MJ (2003) The role of ultrasound in molecular imaging. Br J Radiol 76(Spec No 2):S140–S150

    Article  PubMed  CAS  Google Scholar 

  15. Jain KK (2004) Role of pharmacoproteomics in the development of personalized medicine. Pharmacogenomics 5:331–336

    Article  PubMed  CAS  Google Scholar 

  16. Artemov D, Mori N, Ravi R, Bhujwalla ZM (2003) Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 63:2723–2727

    PubMed  CAS  Google Scholar 

  17. Noble ME, Endicott JA, Johnson LN (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303:1800–1805

    Article  PubMed  CAS  Google Scholar 

  18. Waldherr C, Pless M, Maecke HR, Schumacher T, Crazzolara A, Nitzsche EU, Haldemann A, Mueller-Brand J (2002) Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 43:610–616

    PubMed  CAS  Google Scholar 

  19. Li S, Peck-Radosavljevic M, Koller E, Koller F, Kaserer K, Kreil A, Kapiotis S, Hamwi A, Weich HA, Valent P, Angelberger P, Dudczak R, Virgolini I (2001) Characterization of (123)I-vascular endothelial growth factor-binding sites expressed on human tumour cells: possible implication for tumour scintigraphy. Int J Cancer 91:789–796

    Article  PubMed  CAS  Google Scholar 

  20. MacLaren DC, Gambhir SS, Satyamurthy N, Barrio JR, Sharfstein S, Toyokuni T, Wu L, Berk AJ, Cherry SR, Phelps ME, Herschman HR (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791

    Article  PubMed  CAS  Google Scholar 

  21. Rogers BE, McLean SF, Kirkman RL, Della Manna D, Bright SJ, Olsen CC, Myracle AD, Mayo MS, Curiel DT, Buchsbaum DJ (1999) In vivo localization of [(111)In]-DTPA-D-Phe1-octreotide to human ovarian tumor xenografts induced to express the somatostatin receptor subtype 2 using an adenoviral vector. Clin Cancer Res 5:383–393

    PubMed  CAS  Google Scholar 

  22. De Santes K, Slamon D, Anderson SK, Shepard M, Fendly B, Maneval D, Press O (1992) Radiolabeled antibody targeting of the HER-2/neu oncoprotein. Cancer Res 52:1916–1923

    PubMed  Google Scholar 

  23. Schmieder AH, Winter PM, Caruthers SD, Harris TD, Williams TA, Allen JS, Lacy EK, Zhang H, Scott MJ, Hu G, Robertson JD, Wickline SA, Lanza GM (2005) Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles. Magn Reson Med 53:621–627

    Article  PubMed  CAS  Google Scholar 

  24. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  PubMed  CAS  Google Scholar 

  25. Santra S, Xu J, Wang K, Tan W (2004) Luminescent nanoparticle probes for bioimaging. J Nanosci Nanotechnol 4:590–599

    Article  PubMed  CAS  Google Scholar 

  26. Chung JK (2002) Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 43:1188–1200

    PubMed  CAS  Google Scholar 

  27. Chung JK, Kang JH (2004) Translational research using the sodium/iodide symporter in imaging and therapy. Eur J Nucl Med Mol Imaging 31:799–802

    Article  PubMed  Google Scholar 

  28. Ichikawa T, Hogemann D, Saeki Y, Tyminski E, Terada K, Weissleder R, Chiocca EA, Basilion JP (2002) MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 4:523–530

    Article  PubMed  CAS  Google Scholar 

  29. Hogemann-Savellano D, Bos E, Blondet C, Sato F, Abe T, Josephson L, Weissleder R, Gaudet J, Sgroi D, Peters PJ, Basilion JP (2003) The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 5:495–506

    PubMed  Google Scholar 

  30. Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355

    Article  PubMed  CAS  Google Scholar 

  31. Tung CH, Mahmood U, Bredow S, Weissleder R (2000) In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60:4953–4958

    PubMed  CAS  Google Scholar 

  32. Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743–748

    Article  PubMed  CAS  Google Scholar 

  33. Ntziachristos V, Tung CH, Bremer C, Weissleder R (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8:757–760

    Article  PubMed  CAS  Google Scholar 

  34. Vihinen P, Kahari VM (2002) Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 99:157–166

    Article  PubMed  CAS  Google Scholar 

  35. Bogdanov A, Jr., Matuszewski L, Bremer C, Petrovsky A, Weissleder R (2002) Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging 1:16–23

    Article  PubMed  CAS  Google Scholar 

  36. Chen JW, Pham W, Weissleder R, Bogdanov A Jr (2004) Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis. Magn Reson Med 52:1021–1028

    Article  PubMed  CAS  Google Scholar 

  37. Yaghoubi SS, Barrio JR, Namavari M, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS (2005) Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 12:329–339

    Article  PubMed  CAS  Google Scholar 

  38. Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325

    Article  PubMed  CAS  Google Scholar 

  39. Tung CH, Zeng Q, Shah K, Kim DE, Schellingerhout D, Weissleder R (2004) In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res 64:1579–1583

    Article  PubMed  CAS  Google Scholar 

  40. Audic Y, Hartley RS (2004) Post-transcriptional regulation in cancer. Biol Cell 96:479–498

    Article  PubMed  CAS  Google Scholar 

  41. Wu JC, Inubushi M, Sundaresan G, Schelbert HR, Gambhir SS (2002) Optical imaging of cardiac reporter gene expression in living rats. Circulation 105:1631–1634

    Article  PubMed  Google Scholar 

  42. de Boer J, van Blitterswijk C, Lowik C (2006) Bioluminescent imaging: emerging technology for non-invasive imaging of bone tissue engineering. Biomaterials 27:1851–1858

    Article  PubMed  CAS  Google Scholar 

  43. Marignol L, Lawler M, Coffey M, Hollywood D (2005) Achieving hypoxia-inducible gene expression in tumors. Cancer Biol Ther 4:359–364

    Article  PubMed  CAS  Google Scholar 

  44. Murdoch C, Lewis CE (2005) Macrophage migration and gene expression in response to tumor hypoxia. Int J Cancer 117:701–708

    Article  PubMed  CAS  Google Scholar 

  45. Dachs GU, Patterson AV, Firth JD, Ratcliffe PJ, Townsend KM, Stratford IJ, Harris AL (1997) Targeting gene expression to hypoxic tumor cells. Nat Med 3:515–520

    Article  PubMed  CAS  Google Scholar 

  46. Liu J, Qu R, Ogura M, Shibata T, Harada H, Hiraoka M (2005) Real-time imaging of hypoxia-inducible factor-1 activity in tumor xenografts. J Radiat Res (Tokyo) 46:93–102

    Article  CAS  Google Scholar 

  47. Huang D, Desbois A, Hou ST (2005) A novel adenoviral vector which mediates hypoxia-inducible gene expression selectively in neurons. Gene Ther 12:1369–1376

    Article  PubMed  CAS  Google Scholar 

  48. Jacobs A, Dubrovin M, Hewett J, Sena-Esteves M, Tan CW, Slack M, Sadelain M, Breakefield XO, Tjuvajev JG (1999) Functional coexpression of HSV-1 thymidine kinase and green fluorescent protein: implications for noninvasive imaging of transgene expression. Neoplasia 1:154–161

    Article  PubMed  CAS  Google Scholar 

  49. Doubrovin M, Ponomarev V, Beresten T, Balatoni J, Bornmann W, Finn R, Humm J, Larson S, Sadelain M, Blasberg R, Gelovani Tjuvajev J (2001) Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci U S A 98:9300–9305

    Article  PubMed  CAS  Google Scholar 

  50. Sato M, Johnson M, Zhang L, Zhang B, Le K, Gambhir SS, Carey M, Wu L (2003) Optimization of adenoviral vectors to direct highly amplified prostate-specific expression for imaging and gene therapy. Mol Ther 8:726–737

    Article  PubMed  CAS  Google Scholar 

  51. Cheng WS, Kraaij R, Nilsson B, van der Weel L, de Ridder CM, Totterman TH, Essand M (2004) A novel TARP-promoter-based adenovirus against hormone-dependent and hormone-refractory prostate cancer. Mol Ther 10:355–364

    Article  PubMed  CAS  Google Scholar 

  52. Iyer M, Salazar FB, Wu L, Carey M, Gambhir SS (2006) Bioluminescence imaging of systemic tumor targeting using a prostate-specific lentiviral vector. Hum Gene Ther 17:125–132

    Article  PubMed  CAS  Google Scholar 

  53. Iyer M, Salazar FB, Lewis X, Zhang L, Carey M, Wu L, Gambhir SS (2004) Noninvasive imaging of enhanced prostate-specific gene expression using a two-step transcriptional amplification-based lentivirus vector. Mol Ther 10:545–552

    Article  PubMed  CAS  Google Scholar 

  54. Adams JY, Johnson M, Sato M, Berger F, Gambhir SS, Carey M, Iruela-Arispe ML, Wu L (2002) Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med 8:891–897

    PubMed  CAS  Google Scholar 

  55. Herschman HR (2002) Non-invasive imaging of reporter genes. J Cell Biochem Suppl 39:36–44

    Article  PubMed  CAS  Google Scholar 

  56. Phelps ME (2000) PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41:661–681

    PubMed  CAS  Google Scholar 

  57. Hemminki A, Zinn KR, Liu B, Chaudhuri TR, Desmond RA, Rogers BE, Barnes MN, Alvarez RD, Curiel DT (2002) In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus. J Natl Cancer Inst 94:741–749

    PubMed  CAS  Google Scholar 

  58. Altmann A, Kissel M, Zitzmann S, Kubler W, Mahmut M, Peschke P, Haberkorn U (2003) Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma. J Nucl Med 44:973–980

    PubMed  CAS  Google Scholar 

  59. Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, Kaestle C, Wagner R, Wienhard K, Heiss WD (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358:727–729

    Article  PubMed  CAS  Google Scholar 

  60. Reszka RC, Jacobs A, Voges J (2005) Liposome-mediated suicide gene therapy in humans. Methods Enzymol 391:200–208

    PubMed  CAS  Google Scholar 

  61. Laxman B, Hall DE, Bhojani MS, Hamstra DA, Chenevert TL, Ross BD, Rehemtulla A (2002) Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci U S A 99:16551–16555

    Article  PubMed  CAS  Google Scholar 

  62. Hackman T, Doubrovin M, Balatoni J, Beresten T, Ponomarev V, Beattie B, Finn R, Bornmann W, Blasberg R, Tjuvajev JG (2002) Imaging expression of cytosine deaminase-herpes virus thymidine kinase fusion gene (CD/TK) expression with [124I]FIAU and PET. Mol Imaging 1:36–42

    Article  PubMed  CAS  Google Scholar 

  63. Herschman HR (2003) Molecular imaging: looking at problems, seeing solutions. Science 302:605–608

    Article  PubMed  CAS  Google Scholar 

  64. Weissleder R, Simonova M, Bogdanova A, Bredow S, Enochs WS, Bogdanov A Jr (1997) MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204:425–429

    PubMed  CAS  Google Scholar 

  65. Enochs WS, Petherick P, Bogdanova A, Mohr U, Weissleder R (1997) Paramagnetic metal scavenging by melanin: MR imaging. Radiology 204:417–423

    PubMed  CAS  Google Scholar 

  66. Bogdanov AA Jr, Weissleder R (2002) In vivo imaging of gene delivery and expression. Trends Biotech 20:511–518

    Google Scholar 

  67. Rehemtulla A, Stegman LD, Cardozo SJ, Gupta S, Hall DE, Contag CH, Ross BD (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2:491–495

    Article  PubMed  CAS  Google Scholar 

  68. Rudin M, Rausch M, Stoeckli M (2005) Molecular imaging in drug discovery and development: potential and limitations of nonnuclear methods. Mol Imaging Biol 7:5–13

    Article  PubMed  Google Scholar 

  69. Thorne SH, Tam BY, Kirn DH, Contag CH, Kuo CJ (2006) Selective Intratumoral Amplification of an Antiangiogenic Vector by an Oncolytic Virus Produces Enhanced Antivascular and Anti-tumor Efficacy. Mol Ther

  70. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5:387–398

    Article  PubMed  CAS  Google Scholar 

  71. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593

    Article  PubMed  CAS  Google Scholar 

  72. Li C, Bowles DE, van Dyke T, Samulski RJ (2005) Adeno-associated virus vectors: potential applications for cancer gene therapy. Cancer Gene Ther 12:913–925

    Article  PubMed  CAS  Google Scholar 

  73. Barzon L, Stefani AL, Pacenti M, Palu G (2005) Versatility of gene therapy vectors through viruses. Expert Opin Biol Ther 5:639–662

    Article  PubMed  CAS  Google Scholar 

  74. Banerjee P, Reichardt W, Weissleder R, Bogdanov A Jr (2004) Novel hyperbranched dendron for gene transfer in vitro and in vivo. Bioconjug Chem 15:960–968

    Article  PubMed  CAS  Google Scholar 

  75. Meilander-Lin NJ, Cheung PJ, Wilson DL, Bellamkonda RV (2005) Sustained in vivo gene delivery from agarose hydrogel prolongs nonviral gene expression in skin. Tissue Eng 11:546–555

    Article  PubMed  CAS  Google Scholar 

  76. Schellingerhout D, Rainov NG, Breakefield XO, Weissleder R (2000) Quantitation of HSV mass distribution in a rodent brain tumor model. Gene Ther 7:1648–1655

    Article  PubMed  CAS  Google Scholar 

  77. Unger EC, Hersh E, Vannan M, McCreery T (2001) Gene delivery using ultrasound contrast agents. Echocardiography 18:355–361

    Article  PubMed  CAS  Google Scholar 

  78. Bos C, Lepetit-Coiffe M, Quesson B, Moonen CT (2005) Simultaneous monitoring of temperature and T1: methods and preliminary results of application to drug delivery using thermosensitive liposomes. Magn Reson Med 54:1020–1024

    Article  PubMed  CAS  Google Scholar 

  79. Tarner IH, Nakajima A, Seroogy CM, Ermann J, Levicnik A, Contag CH, Fathman CG (2002) Retroviral gene therapy of collagen-induced arthritis by local delivery of IL-4. Clin Immunol 105:304–314

    Article  PubMed  CAS  Google Scholar 

  80. Tarner IH, Slavin AJ, McBride J, Levicnik A, Smith R, Nolan GP, Contag CH, Fathman CG (2003) Treatment of autoimmune disease by adoptive cellular gene therapy. Ann N Y Acad Sci 998:512–519

    Article  PubMed  CAS  Google Scholar 

  81. Leo BM, Li X, Balian G, Anderson DG (2004) In vivo bioluminescent imaging of virus-mediated gene transfer and transduced cell transplantation in the intervertebral disc. Spine 29:838–844

    Article  PubMed  Google Scholar 

  82. Song Y, Morikawa S, Morita M, Inubushi T, Takada T, Torii R, Tooyama I (2006) Magnetic resonance imaging using hemagglutinating virus of Japan-envelope vector successfully detects localization of intra-cardially administered microglia in normal mouse brain. Neurosci Lett 395:42–45

    Article  PubMed  CAS  Google Scholar 

  83. Hauger O, Delalande C, Deminiere C, Fouqueray B, Ohayon C, Garcia S, Trillaud H, Combe C, Grenier N (2000) Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology 217:819–826

    PubMed  CAS  Google Scholar 

  84. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  85. Dubey P, Su H, Adonai N, Du S, Rosato A, Braun J, Gambhir SS, Witte ON (2003) Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci U S A 100:1232–1237

    Article  PubMed  CAS  Google Scholar 

  86. Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, Balatoni J, Teruya-Feldstein J, Heller G, May C, Ponomarev V, Ruan S, Finn R, Blasberg RG, Bornmann W, Riviere I, Sadelain M, O’Reilly RJ, Larson SM, Tjuvajev JG (2003) Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 21:405–413

    Article  PubMed  CAS  Google Scholar 

  87. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  CAS  Google Scholar 

  88. Daley GQ, Goodell MA, Snyder EY (2003) Realistic prospects for stem cell therapeutics. Hematology (Am Soc Hematol Educ Program):398–418

  89. Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH Jr, Bulte JW (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487

    Article  PubMed  Google Scholar 

  90. Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK, Schwindt W, Buhrle C (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A 99:16267–16272

    Article  PubMed  CAS  Google Scholar 

  91. Cao YA, Wagers AJ, Beilhack A, Dusich J, Bachmann MH, Negrin RS, Weissman IL, Contag CH (2004) Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci U S A 101:221–226

    Article  PubMed  CAS  Google Scholar 

  92. Guilhon E, Voisin P, de Zwart JA, Quesson B, Salomir R, Maurange C, Bouchaud V, Smirnov P, de Verneuil H, Vekris A, Canioni P, Moonen CT (2003) Spatial and temporal control of transgene expression in vivo using a heat-sensitive promoter and MRI-guided focused ultrasound. J Gene Med 5:333–342

    Article  PubMed  CAS  Google Scholar 

  93. Letavernier B, Salomir R, Delmas Y, Rome C, Couillaud F, Desmouliere A, Hauger O, Grenier N, Combe C, Ripoche J, Moonen C (2006) Spatio-temporal expression control of a heat shock promoter-driven transgene delivered in the kidney by modified mesenchymal stem cells: a feasibility study using MR guided focused ultrasound. International Society for Magnetic Resonance in Medicine 14th Scientific Meeting and Exhibition, 6–12th May 2006, Seattle, Washington, USA

Download references

Acknowledgement

European Commission, Network of Excellence “Diagnostic Molecular Imaging”; Ligue National Contre le Cancer, Conseil Régional d’Aquitaine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrit T. W. Moonen.

Appendix

Appendix

Basic mechanisms of gene expression

The conserved genetic information (gene) codes for the proteins at the DNA level. This process is achieved in two steps: 1) the transcription in which a part of a gene is transcribed into ribonucleic acid messenger (mRNA), and 2) the translation in which the mRNA is used for the synthesis of proteins by ribosomes. The transcription is initiated by activation of the gene promoter, a specific DNA sequence that can be targeted by both transcription factors and RNA polymerase.

Promoters which are specifically activated according to the tissue or cell type (tissue/cell specific promoters) or to the presence of specific molecules like antibiotics (inducible promoters) are quite often used for gene therapy strategies

Moreover, the transcription process is also regulated by DNA sequences, located distant in the genome, that increase (enhancers) or decrease (repressors) the level of gene expression. Enhancers and repressors work as regulators of promoters activity whatever their orientation or location (upstream or downstream) relative to the transcription unit. In gene therapy strategies, these regulatory elements may be used and combined in order to control the level of gene expression.

In eukaryotic cells, the code of mature mRNA is discontinuous with respect to that of the gene. Part of the gene coding for proteins called exons are separated from other sequences called introns. The primary mRNA transcript is a complete copy of the gene, containing both introns and exons. Introns are removed by splicing to provide the mature mRNA. The mature mRNA is translated into proteins by the ribosomes that bind the mRNA proximal (5’)end, scan the mRNA sequence to find the translation initiation codon (usually AUG). Alternatively, ribosomes may bind close to the initiation codon via an Internal Ribosome Entry Sequence (IRES) without scanning the complete 5’end. From the initiation codon up to the stop codon, the mRNA is translated into an amino-acid sequence. Respective contribution of both scanning and IRES dependent translations may vary according to the physiologic state of the cell, and may influence protein production. Some viral IRES sequences are very efficient and are used in gene therapy to translate two coding sequences in a single mRNA.

The wide panel of mechanisms involved in transcription and translation processes may be used as separate elements or combined to modulate and control gene expression for gene therapy purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rome, C., Couillaud, F. & Moonen, C.T.W. Gene expression and gene therapy imaging. Eur Radiol 17, 305–319 (2007). https://doi.org/10.1007/s00330-006-0378-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0378-z

Keywords

Navigation