Skip to main content
Log in

Iron, silicate, and light co-limitation of three Southern Ocean diatom species

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The effect of combined iron, silicate, and light co-limitation was investigated in the three diatom species Actinocyclus sp. Ehrenberg, Chaetoceros dichaeta Ehrenberg, and Chaetoceros debilis Cleve, isolated from the Southern Ocean (SO). Growth of all species was co-limited by iron and silicate, reflected in a significant increase in the number of cell divisions compared to the control. Lowest relative Si uptake and drastic frustule malformation was found under iron and silicate co-limitation in C. dichaeta, while Si limitation in general caused cell elongation in both Chaetoceros species. Higher light intensities similar to SO surface conditions showed a negative impact on growth of C. dichaeta and Actinocyclus sp. and no effect on C. debilis. This is in contrast to the assumed light limitation of SO diatoms due to deep wind driven mixing. Our results suggest that growth and species composition of Southern Ocean diatoms is influenced by a sensitive interaction of the abiotic factors, iron, silicate, and light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abelmann A, Gersonde R (1991) Biosiliceous particle flux in the Southern Ocean. Mar Chem 35:503–536

    Article  CAS  Google Scholar 

  • Admiraal W (1977) Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. Mar Biol 39:1–9

    Article  Google Scholar 

  • Anderson M et al (2004) Light climate and primary productivity in the Arctic, UNIS Publication Series, AB323 Report ISBN 82-481-0010-3, pp 1–95

  • Banse K (1991) Rates of phytoplankton cell division in the field and in iron enrichment experiments. Limnol Oceanogr 36:1886–1898

    CAS  Google Scholar 

  • Blain S et al (2002) Quantification of algal iron requirements in the subAntarctic Southern Ocean (Indian sector). Deep Sea Res Part II 49:3255–3273

    Article  CAS  Google Scholar 

  • Brzezinski MA (1992) Cell-cycle effects on the kinetics of silicic acid uptake and resource competition among diatoms. J Plankton Res 14:1511–1539

    Article  CAS  Google Scholar 

  • Brzezinski MA et al (1990) Silicon availability and cell-cycle progression in marine diatoms. Mar Ecol Prog Ser 67:83–96

    Article  CAS  Google Scholar 

  • Brzezinski MA et al (2005) Control of silica production by iron and silicic acid during the Southern Ocean Iron Experiment (SOFeX). Limnol Oceanogr 50:810–824

    CAS  Google Scholar 

  • Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York

    Google Scholar 

  • Claquin P et al (2002) Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen, and phosphorus control. J Phycol 38:922–930

    Article  CAS  Google Scholar 

  • Coale KH et al (2003) Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic circumpolar current along 170°W. Deep-Sea Res Part II 50:635–653

    Article  CAS  Google Scholar 

  • Coale KH et al (2004) Southern Ocean iron enrichment experiment: carbon cycling in high- and low-Si waters. Science 304:408–414

    Article  PubMed  CAS  Google Scholar 

  • Dafner EV, Mordasova NV (1994) Influence of biotic factors on the hydrochemical structure of surface water in the Polar Frontal Zone of the Atlantic Antarctic. Mar Chem 45:137–148

    Article  CAS  Google Scholar 

  • de Baar HJW et al (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar Ecol Prog Ser 65:105–122

    Article  Google Scholar 

  • de Baar HJW et al (2005) Synthesis of iron fertilisation experiments: from the iron age in the age of enlightenment. J Geophys Res, 110, C09S16. doi:10.1029/2004JC002601

  • de La Rocha CL et al (2000) Effects of iron and zinc deficiency on elemental composition and silica production by diatoms, Mar Ecol Prog Ser 195:71–79

    Article  Google Scholar 

  • Franck VM et al (2000) Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep Sea Res Part II 47:3315–3338

    Article  CAS  Google Scholar 

  • Franck VM et al (2003) Iron and zinc effects on silicic acid and nitrate uptake kinetics in three high-nutrient, low-chlorophyll (HNLC) regions. Mar Ecol Prog Ser 252:15–33

    Article  CAS  Google Scholar 

  • Grasshoff K et al (1999) Methods of seawater analysis. 3rd edn, Wiley-VCH, Weinheim

    Google Scholar 

  • Greene RM et al (1992) Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100:565–575

    PubMed  CAS  Google Scholar 

  • Greene RM et al (1994) Physiological limitation of phytoplankton photosynthesis in the eastern equatorial Pacific determined from variability in the quantum yield of fluorescence. Limnol Oceanogr 39:1061–1074

    Article  CAS  Google Scholar 

  • Harrison PJ et al (1977) Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassosira gravida. Mar Biol 43:19–31

    Article  CAS  Google Scholar 

  • Hillebrand H et al (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hoffmann LJ et al (2006) Different reactions of Southern Ocean phytoplankton size classes to iron fertilization. Limnol Oceanogr 51:1217–1229

    CAS  Google Scholar 

  • Hoffmann LJ et al (2007) Effects of iron on the elemental stoichiometry during EIFEX and in the diatoms Fragilariopsis kerguelensis and Chaetoceros dichaeta. Biogeosciences 4:569–579

    CAS  Google Scholar 

  • Hutchins DA et al (2001) Control of phytoplankton growth by iron and silicic acid availability in the subAntarctic Southern Ocean: Experimental results from the SAZ project. J Geophys Res, 106:31559–31572

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194

    CAS  Google Scholar 

  • Kolbowski J, Schreiber U (1995) Computer-controlled phytoplankton analyzer based on 4-wavelengths PAM chlorophyll fluorometer. In: Mathis P (ed) Photosynthesis: from light to biosphere, pp 825–828

  • Leblanc K et al (2005) Fe and Zn effects on the Si cycle and diatom community structure in two contrasting high and low-silicate HNLC areas. Deep Sea Res Part I 52:1842–1864

    Article  CAS  Google Scholar 

  • Leynaert A et al (2004) Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics. Limnol Oceanogr 49:1134–1143

    CAS  Google Scholar 

  • Martin-Jézéquel V et al (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840

    Article  Google Scholar 

  • Martin JH et al (1990) Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem Cycles 4:5–12

    Article  CAS  Google Scholar 

  • Mitchell BG et al (1991) Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol Oceanogr 36:1662–1677

    Google Scholar 

  • Montagnes DJS et al (1994) Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol Oceanogr 39:1044–1060

    CAS  Google Scholar 

  • Morel FMM et al (1991) Limitation of productivity by trace metals in the sea. Limnol Oceanogr 36:1742–1755

    CAS  Google Scholar 

  • Nelson DM, Smith WO Jr (1991) Sverdrup revisited: critical depth, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance-mixing regime. Limnol Oceanogr 36:1650–1661

    Google Scholar 

  • Nelson DM et al (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global biogeochem Cycles 9:359–372

    Article  CAS  Google Scholar 

  • Paasche E, Østergren I (1980) The annual cycle of plankton diatom growth and silica production in the inner Oslofjord. Limnol Oceanogr 25:481–494

    Article  CAS  Google Scholar 

  • Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol 116:1–18

    Article  CAS  Google Scholar 

  • Sarthou G et al (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42

    Article  CAS  Google Scholar 

  • Sedwick PN et al (2002) Resource limitation of phytoplankton growth in the Crozet Basin, subAntarctic Southern Ocean. Deep Sea Res Part II 49:3327–3349

    Article  Google Scholar 

  • Sigmon DE et al (2002) The Si cycle in the Pacific sector of the Southern Ocean: seasonal diatom production in the surface layer and export to the deep sea. Deep Sea Res Part II 49:1747–1763

    Article  CAS  Google Scholar 

  • Strzepek RF, Price NM (2000) Influence of irradiance and temperature on the iron content of the marine diatom Thalassiosira weissflogii (Bacillariophyceae). Mar Ecol Prog Ser 206:107–117

    Article  CAS  Google Scholar 

  • Strzepek RF, Harrison PJ (2004), Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692

    Article  PubMed  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–392

    Article  CAS  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic Sea Ice—a habitat for extremophiles. Science 295:641–644

    Article  PubMed  CAS  Google Scholar 

  • Timmermans KR et al (2001) Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae). Mar Ecol Prog Ser 217:287–297

    Article  CAS  Google Scholar 

  • Tréguer P, Jacques G (1992) Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen, and silicon in the Antarctic Ocean. Polar Biol 12:149–162

    Article  Google Scholar 

  • Tréguer P et al (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379

    Article  PubMed  Google Scholar 

  • Tsuda A et al (2003) A mesoscale iron enrichment in the western subArctic Pacific induces a large centric diatom bloom. Science 300:958–961

    Article  PubMed  CAS  Google Scholar 

  • van Oijen T et al (2004) Light rather than iron controls photosynthate production and allocation in Southern Ocean phytoplankton populations during austral autumn. J Plankton Res 26:885–900

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jesco Peschutter and Wiebke Schmidt for their help in cell counting, as well as Eike Breitbarth and Peter Croot for helpful comments and discussions. We also would like to thank the two anonymous reviewers for their constructive critics, which have remarkably improved the clarity of the manuscript. This research was funded by the German Research Foundation (DFG) grant PE_565_5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, L.J., Peeken, I. & Lochte, K. Iron, silicate, and light co-limitation of three Southern Ocean diatom species. Polar Biol 31, 1067–1080 (2008). https://doi.org/10.1007/s00300-008-0448-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-008-0448-6

Keywords

Navigation