Skip to main content
Log in

Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

We report a large-scale study on the frequency of transgene and T-DNA backbone integration following Agrobacterium-mediated transformation of immature barley embryos. One hundred and ninety-one plant lines were regenerated after hygromycin selection and visual selection for GFP expression at the callus stage. Southern blotting performed on a subset of 53 lines that were PCR positive for the GFP gene documented the integration of the GFP gene in 27 of the lines. Twenty-three of these lines expressed GFP in T1 plantlets. Southern blotting with a vector backbone probe revealed that 13 of the 27 lines possessed one or more vector backbone fragments illustrating the regular occurrence of vector backbone integration following Agrobacterium infection of barley immature embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GFP:

Green fluorescent protein

nos:

nopaline synthetase

PCR:

Polymerase chain reaction

References

  • Afolabi AS, Worland B, Snape JW, Vain P (2004) A large-scale study of rice plants transformed with different T-DNAs provides new insight into locus composition and T-DNA linkage configurations. Theor Appl Genet 109:815–826. DOI: 10.1007/s00122-004-1692-y

    Article  PubMed  CAS  Google Scholar 

  • Bubner B, Gase K, Baldwin IT (2004) Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR. BMC Biotechnology 4:14. DOI: 10.1186/1472-6750-4-14s

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Connor TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell & Develop Biol-Plant 40:31–45. DOI: 10.1079/IVP2003501

    Article  Google Scholar 

  • Cluster PD, O’Dell M, Metzlaff M, Flavell RB (1996) Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. Plant Mol Biol 32:1197–1203

    Article  PubMed  CAS  Google Scholar 

  • De Buck S, Wilde DE, Montagu MV, Depicker A (2000) T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol Breed 6:459–468. DOI: 10.1023/A:1026575524345

    Article  CAS  Google Scholar 

  • Fang Y-D, Akula C, Altpeter F (2002) Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA:barley genomic DNA junctions. J Plant Physiol 159:1131–1138. DOI: 10.1078/0176-1617-00707

    Article  CAS  Google Scholar 

  • Funatsuki H, Kuroda H, Kihara M, Lazzeri PA, Müller E, Lörz H, Kishinami I (1995) Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theor Appl Genet 91:707–712

    Article  CAS  Google Scholar 

  • Gelvin SB (2003) Agobacterium-mediated plant transformation: The biology behind the “gene-Jockeying” tool. Microbiol Mol Biol Rev 67:16–37. DOI: 10.1128/MMBR67.1.16-37.2003

    Article  PubMed  CAS  Google Scholar 

  • Guidet F, Rogowsky P, Taylor C, Song W, Langridge P (1991) Cloning and characterization of a new rye-specific repeated sequence. Genome 34:81–87

    Google Scholar 

  • Hanson B, Engler D, Moy Y (1999) A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. Plant J 19:727–734. DOI:10.1046/j.1365-313x.1999.00564.x

    Article  PubMed  CAS  Google Scholar 

  • Holm PB, Olsen O, Schnorf M, Brinch-Pedersen H, Knudsen S (2000) Transformation of barley by microinjection into isolated zygote protoplasts. Transgenic Res 9:21–32. DOI: 10.1023/A:1008974729597

    Article  PubMed  CAS  Google Scholar 

  • Horvath H, Huang J, Wong O, Kohl E, Okita T, Kananggara G, von Wettstein D (2000) The production of recombinant protein in transgenic barley grains. Proc Natl Acad Sci 97:1914–1919. DOI: 10.1073/pnas.030527497

    Article  PubMed  CAS  Google Scholar 

  • Iglesias VA, Moscone EA, Papp I (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Jähne A, Becker D, Brettschneider R, Lörz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet 89:525–533

    Article  Google Scholar 

  • Jakowitsch J, Papp I, Moscone EA (1999) Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J 17:131–140. DOI:10.1046/j.1365-313X.1999.00357.x

    Article  PubMed  CAS  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector “backbone” sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957. DOI:10.1046/j.1365-313X.1997.11050945.x

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Lee J, Jun SH, Park S, Kang H-G, Kwon S, An G (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52:761–773. DOI 10.1023/A:1025093101021

    Article  PubMed  CAS  Google Scholar 

  • Kuraya Y, Ohta S, Fukuda M (2004) Suppression of transfer of non-T-DNA ‘vector backbone’ sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens. Mol Breed 14:309–320. DOI: 10.1023/B:MOLB.0000047792.77219.bb

    Article  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technol 9:963–967

    Article  PubMed  CAS  Google Scholar 

  • Matthews PR, Wang M-B, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent twin T-DNAs on a standard Agrobacterium transformation vector. Mol Breed 7:195–202. DOI: 10.1023/A:1011333321893

    Article  CAS  Google Scholar 

  • Matzke MA, Matzke AJM (1998) Gene silencing in plants: relevance for genome evolution and the acquisition of genomic methylation patterns. CIBA Found Symp 214:168–180

    CAS  Google Scholar 

  • Meza TJ, Stangeland B, Mercy IS, Skårn M, Nymoen DA, Berg A, Butenko MA, Håkelien A-M, Haslekås C, Meza-Zepeda LA, Aalen RB (2002) Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res 30:4556–4566. 10.1093/nar/gkf568

    Article  PubMed  CAS  Google Scholar 

  • Murray F, Brettell R, Matthews P, Bishop D, Jacobsen J (2004) Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes. Plant Cell Rep 22:397–402. DOI: 10.1007/s00299-003-0704-8

    Article  PubMed  CAS  Google Scholar 

  • Patel M, Johnson JS, Brettell RIS, Jacobsen J, Xue GP (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6:113–123. DOI: 10.1023/A:1009640427515

    Article  CAS  Google Scholar 

  • Ramanathan V, Veluthambi K (1995) Transfer of non-T-DNA portions of the Agrobacterium-tumefasciens Ti plasmid pTiA6 from the left terminus of T-L-DNA. Plant Mol Biol 28:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Shou H, Frame BR, Whitman SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208. DOI: 10.1023/B:MOLB.0000018767.64586.53

    Article  CAS  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell S (1997) Agrobacterium tumefasciens mediated barley transformation. Plant J 11:1369–1376. DOI:10.1046/j.1365-313X.1997.11061369.x

    Article  CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789. DOI: 10.1007/s00299-004-0892-x

    Article  PubMed  CAS  Google Scholar 

  • Trifonova A, Madsen S, Olesen A (2001) Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci 161:871–880. DOI:10.1016/S0168-9452(01)00479-4

    Article  CAS  Google Scholar 

  • Van der Graaf E, Hooykaas PJJ (1996) Improvements in the transformation of Arabidopsis thaliana c24 leaf-discs by Agrobacterium tumefasciens. Plant Cell Rep 15:572–577. DOI: 10.1007/s002990050076

    Article  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large number of independently transformed fertile barley plants. Plant Physiol 104:37–48

    PubMed  CAS  Google Scholar 

  • Wenck A, Czakó M, Kanevski I, MártonL (1997) Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol 34:913–922. DOI: 10.1023/A:1005849303333

    Article  PubMed  CAS  Google Scholar 

  • Wolters AM-A, Trindade LM, Jakobseb E, Visser RGF (1998) Fluorescence in situ hybridisation on extended DNA fibres as a tool to analyze complex T-DNA loci in potato. Plant J 13:837–847. DOI:10.1046/j.1365-313X.1998.00079.x

    Article  CAS  Google Scholar 

  • Yin Z, Wang G-L (2000) Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor Appl Genet 100:461–470. DOI: 10.1007/s001220050060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Mathews CSIRO, Canberra for providing us with the vector system and D. Bishop for technical assistance while implementing the procedure. Furthermore the authors would like to thank K. B. Nellerup and O. B. Hansen for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette Lange.

Additional information

Communicated by W. Horwood

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, M., Vincze, E., Møller, M.G. et al. Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation. Plant Cell Rep 25, 815–820 (2006). https://doi.org/10.1007/s00299-006-0140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0140-7

Keywords

Navigation