Skip to main content
Log in

Generation of an oligonucleotide array for analysis of gene expression in Chlamydomonas reinhardtii

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The availability of genome sequences makes it possible to develop microarrays that can be used for profiling gene expression over developmental time, as organisms respond to environmental challenges, and for comparison between wild-type and mutant strains under various conditions. The desired characteristics of microarrays (intense signals, hybridization specificity and extensive coverage of the transcriptome) were not fully met by the previous Chlamydomonas reinhardtii microarray: probes derived from cDNA sequences (~300 bp) were prone to some nonspecific cross-hybridization and coverage of the transcriptome was only ~20%. The near completion of the C. reinhardtii nuclear genome sequence and the availability of extensive cDNA information have made it feasible to improve upon these aspects. After developing a protocol for selecting a high-quality unigene set representing all known expressed sequences, oligonucleotides were designed and a microarray with ~10,000 unique array elements (~70 bp) covering 87% of the known transcriptome was developed. This microarray will enable researchers to generate a global view of gene expression in C. reinhardtii. Furthermore, the detailed description of the protocol for selecting a unigene set and the design of oligonucleotides may be of interest for laboratories interested in developing microarrays for organisms whose genome sequences are not yet completed (but are nearing completion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asamizu E, Nakamura Y, Sato S, Fukuzawa H, Tabata S (1999) A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii I Generation of 3433 non-redundant expressed sequence tags. DNA Res 6:369–373

    Article  PubMed  Google Scholar 

  • Asamizu E, Miura K, Kucho K, Inoue Y, Fukuzawa H, Ohyama K, Nakamura Y, Tabata S (2000) Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii. DNA Res 7:305–307

    Article  PubMed  Google Scholar 

  • Barrett JC, Kawasaki ES (2003) Microarrays: the use of oligonucleotides and cDNA for the analysis of gene expression. Drug Discov Today 8(3):134–141

    Article  PubMed  CAS  Google Scholar 

  • Choudhuri S (2004) Microarrays in biology and medicine. J Biochem Mol Toxicol 18:171–179

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Yildiz F, Grossman AR (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15:2150–2159

    PubMed  CAS  Google Scholar 

  • Dent RM, Han M, Niyogi KK (2001) Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends Plant Sci 6:364–371

    Article  PubMed  CAS  Google Scholar 

  • Dharmadi Y, Gonzalez R (2004) DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnol Prog 20:1309–1324

    Article  PubMed  CAS  Google Scholar 

  • Dutcher SK (2000) Chlamydomonas reinhardtii: biological rationale for genomics. J Eukaryot Microbiol 47:340–349

    Article  PubMed  CAS  Google Scholar 

  • Dutcher SK (2003) Elucidation of basal body and centriole functions in Chlamydomonas reinhardtii. Traffic 4:443–451

    Article  PubMed  CAS  Google Scholar 

  • Elrad D, Grossman AR (2004) A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii. Curr Genet 45:61–75

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR (2000) Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Curr Opin Plant Biol 3:132–137

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2:1137–1150

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406

    Article  PubMed  CAS  Google Scholar 

  • He Z, Wu L, Fields MW, Zhou J (2005) Use of microarrays with different probe sizes for monitoring gene expression. Appl Environ Microbiol 71(9):5154–5162

    Article  PubMed  CAS  Google Scholar 

  • Hollingshead D, Lewis DA, Mirnics K (2005) Platform influence on DNA microarray data in postmortem brain research. Neurobiol Dis 18(3):649–655

    Article  PubMed  CAS  Google Scholar 

  • Huang K, Merkle T, Beck CF (2002) Isolation and characterization of a Chlamydomonas gene that encodes a putative blue-light photoreceptor of the phototropin family. Physiol Plant 115:613–622

    Article  PubMed  CAS  Google Scholar 

  • Im CS, Grossman AR (2002) Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii. Plant J 30:301–313

    Article  PubMed  CAS  Google Scholar 

  • Kamiya R (2002) Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int Rev Cytol 219:115–155

    Article  PubMed  CAS  Google Scholar 

  • Kane MD, jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ (2000) Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 28(22):4552–4557

    Article  PubMed  CAS  Google Scholar 

  • Kateriya S, Nagel G, Bamberg E, Hegemann P (2004) “Vision” in single-celled algae. News Physiol Sci 19:133–137

    PubMed  CAS  Google Scholar 

  • Kim HL (2003) Comparison of oligonucleotide-microarray and serial analysis of gene expression (SAGE) in transcript profiling analysis of megakaryocytes derived from CD34+ cells. Exp Mol Med 35:460–466

    PubMed  CAS  Google Scholar 

  • Kothapalli R, Yoder SJ, Mane S, Loughran TP Jr (2002) Microarray results: how accurate are they? BMC Bioinform 3:22

    Article  Google Scholar 

  • Kuo WP, Jenssen T-K, Butte AJ, Ohno-Machado L, Kohane IS (2002) Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics 18:405–412

    Article  PubMed  CAS  Google Scholar 

  • LaFontaine S, Quinn JM, Nakamoto SS, Page MD, Gohre V, Moseley JL, Kropat J, Merchant S (2002) Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot Cell 1:736–757

    Article  CAS  Google Scholar 

  • Ledford HK, Baroli I, Shin JW, Fischer BB, Eggen RI, Niyogi KK (2004) Comparative profiling of lipid-soluble antioxidants and transcripts reveals two phases of photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas reinhardtii. Mol Genet Genomics 272:470–479

    Article  PubMed  CAS  Google Scholar 

  • Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC, Lewis RA, Green JS, Parfrey PS, Leroux MR, Davidson WS, Beales PL, Guay-Woodford LM, Yoder BK, Stormo GD, Katsanis N, Dutcher SK (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117:541–552

    Article  PubMed  CAS  Google Scholar 

  • Lohr M, Im CS, Grossman AR (2005) Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 138:490–515

    Article  PubMed  CAS  Google Scholar 

  • Mantripragada KK, Buckley PG, de Stahl TD, Dumanski JP (2004) Genomic microarrays in the spotlight. Trends Genet 20:87–94

    Article  PubMed  CAS  Google Scholar 

  • Mittag M, Wagner V (2003) The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii. Biol Chem 384:689–695

    Article  PubMed  CAS  Google Scholar 

  • Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol 137:399–409

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, Ohyama K, Fukuzawa H (2004) Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 135:1595–1607

    Article  PubMed  CAS  Google Scholar 

  • Moseley JL, Chang, C-W, Grossman AR (2005) Genome-based approaches to understanding phosphorus deprivation responses and PSR1 Control in Chlamydomonas reinhardtii. Eukaryot Cell (in press)

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945

    Article  PubMed  CAS  Google Scholar 

  • Omran H, Haffner K, Volkel A, Kuehr J, Ketelsen UP, Ross UH, Konietzko N, Wienker T, Brandis M, Hildebrandt F (2000) Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Mol Biol 23:696–702

    PubMed  CAS  Google Scholar 

  • Park PJ, Cao YA, Lee SY, Kim JW, Chang MS, Hart R, Choi S (2004) Current issues for DNA microarrays: platform comparison, double linear amplification and universal RNA reference. J Biotech 112:225–245

    Article  CAS  Google Scholar 

  • Pazour GJ (2004) Intraflagellar transport and cilia-dependent renal disease: the ciliary hypothesis of polycystic kidney disease. J Am Soc Nephrol 15:2528–2536

    Article  PubMed  Google Scholar 

  • Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718

    Article  PubMed  CAS  Google Scholar 

  • Petersen D, Chandramouli GVR, Geoghegan J, Hilburn J, Paarlberg J, Kim CH, Munroe D, Gangi L, Han J, Puri R, Staudt L, Weinstein J, Barret JC, Green J, Kawasaki ES (2005) Three microarray platforms: an analysis of their concordance in profiling gene expression. BMC Genomics 6(1):63

    Article  PubMed  CAS  Google Scholar 

  • Qin H, Rosenbaum JL, Barr MM (2001) An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr Biol 11:457–461

    Article  PubMed  CAS  Google Scholar 

  • Rochaix JD (2002) Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes. FEBS Lett 529:34–38

    Article  PubMed  CAS  Google Scholar 

  • Rochaix JD (2004) Genetics of the biogenesis and dynamics of the photosynthetic machinery in eukaryotes. Plant Cell 16:1650–1660

    Article  PubMed  CAS  Google Scholar 

  • Scholey JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19:423–443

    Article  PubMed  CAS  Google Scholar 

  • Shrager J, Hauser C, Chang CW, Harris EH, Davies J, McDermott J, Tamse R, Zhang Z, Grossman AR (2003) Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol 131:401–408

    Article  PubMed  Google Scholar 

  • Silflow CD, Lefebvre PA (2001) Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. Plant Physiol 127:1500–1507

    Article  PubMed  CAS  Google Scholar 

  • Sineshchekov OA, Jung KH, Spudich JL (2002) The rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99:225–230

    Article  CAS  Google Scholar 

  • Snell WJ, Pan J, Wang Q (2004) Cilia and flagella revealed: from flagellar assembly in Chlamydomonas to human obesity disorders. Cell 117:693–697

    Article  PubMed  CAS  Google Scholar 

  • Stauber EJ, Fink A, Markert C, Kruse O, Johanningmeier U, Hippler M (2003) Proteomics of Chlamydomonas reinhardtii light-harvesting proteins. Eukaryot Cell 2:978–994

    Article  PubMed  CAS  Google Scholar 

  • Stears RL, Martinsky T, Schena M (2003) Trends in microarray analysis. Nature Med 9(1):140–145

    Article  PubMed  CAS  Google Scholar 

  • Stoughton RB (2005) Applications of DNA microarrays in biology. Annu Rev Biochem 74:53–82

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Braby CE, Grossman AR (2001) Sulfur economy and cell wall biosynthesis during sulfur limitation of Chlamydomonas reinhardtii. Plant Physiol 127:665–673

    Article  PubMed  CAS  Google Scholar 

  • Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS, Lempicki RA, Raaka BM, Cam MC (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31:5676–5684

    Article  PubMed  CAS  Google Scholar 

  • Tiquia SM, Wu L, Chong SC, Passovets S, Xu D, Xu Y, Zhou J (2004) Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. Bio Tech 36(4):664–675

    CAS  Google Scholar 

  • Wagner V, Fiedler M, Markert C, Hippler M, Mittag M (2004) Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtii. FEBS Lett 559:129–135

    Article  PubMed  CAS  Google Scholar 

  • Wang H, He X, Band M, Wilson C, Liu L (2005) A study of inter-lab and inter-platform agreement of DNA microarray data. BMC Genomics 6(1):71

    Article  PubMed  CAS  Google Scholar 

  • Werner R (2002) Chlamydomonas reinhardtii as a unicellular model for circadian rhythm analysis. Chronobiol Int 19:325–343

    Article  PubMed  CAS  Google Scholar 

  • Wostrikoff K, Girard-Bascou J, Wollman FA, Choquet Y (2004) Biogenesis of PSI involves a cascade of translational autoregulation in the chloroplast of Chlamydomonas. EMBO J 23:2696–2705

    Article  PubMed  CAS  Google Scholar 

  • Wykoff D, Grossman A, Weeks DP, Usuda H, Shimogawara K (1999) Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci USA 96:15336–15341

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Shrager J, Jain M, Chang CW, Vallon O, Grossman AR (2004) Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 3:1331–1348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Michael Fero, Elena Seraia and John Coller of the SFGF Laboratory at Stanford for technical advice, printing the arrays and preparing the .gal file in a timely and expert manner. Furthermore, the development of the microarray presented in this manuscript could not have been accomplished without the major sequencing effort of the C. reinhardtii genome that was performed by the Joint Genome Institute (Walnut Creek, CA, USA). This work was supported by NSF Grant MCB 0235878 awarded to ARG. The authors would also like to thank Wirulda Pootakham and Olivier Vallon for helpful discussions and Erika Schraner for help with Supplemental Table 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Eberhard.

Additional information

Communicated by D. Stern

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberhard, S., Jain, M., Im, C.S. et al. Generation of an oligonucleotide array for analysis of gene expression in Chlamydomonas reinhardtii . Curr Genet 49, 106–124 (2006). https://doi.org/10.1007/s00294-005-0041-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0041-2

Keywords

Navigation