Skip to main content

Advertisement

Log in

Enhanced mitochondrial degradation of yeast cytochrome c with amphipathic structures

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The dispensable N-terminus of iso-1-cytochrome c (iso-1) in the yeast Saccharomyces cerevisiae was replaced by 11 different amphipathic structures. Rapid degradation of the corresponding iso-1 occurred, with the degree of degradation increasing with the amphipathic moments; and this amphipathic-dependent degradation was designated ADD. ADD occurred with the holo-forms in the mitochondria but not as the apo-forms in the cytosol. The extreme mutant type degraded with a half-life of approximately 12 min, whereas the normal iso-1 was stable over hours. ADD was influenced by the ρ+ state and by numerous chromosomal genes. Most importantly, ADD appeared to be specifically suppressed to various extents by deletions of any of the YME1, AFG3, or RCA1 genes encoding membrane-associated mitochondrial proteases, probably because the amphipathic structures caused a stronger association with the mitochondrial inner membrane and its associated proteases. The use of ADD assisted in the differentiation of substrates of different mitochondrial degradation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe Y, Shodai T, Muto T, Mihara K, Torii H, Nishikawa S, Endo T, Kohda D (2000) Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100:551–560

    CAS  PubMed  Google Scholar 

  • Arlt H, Tauer R, Feldmann H, Neupert W, Langer T (1996) The YTA10–12 complex, an AAA protease with chaperone-like activity in the inner-membrane of mitochondria. Cell 85:875–885

    CAS  PubMed  Google Scholar 

  • Baim SB, Sherman F (1988) mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8:1591–1601

    CAS  PubMed  Google Scholar 

  • Baim SB, Pietras DF, Eustice DC, Sherman F (1985) A mutation allowing an mRNA secondary structure diminishes translation of Saccharomyces cerevisiae iso-1-cytochrome c. Mol Cell Biol 5:1839–1846

    CAS  PubMed  Google Scholar 

  • Beauvoit B, Rigoulet M, Raffard G, Canioni P, Guerin B (1991) Differential sensitivity of the cellular compartments of Saccharomyces cerevisiae to protonophoric uncoupler under fermentative and respiratory energy supply. Biochemistry 30:11212–11220

    Google Scholar 

  • Berroteran RW, Hampsey M (1991) Genetic analysis of yeast iso-1-cytochrome c structural requirements: suppression of Gly6 replacements by an Asn52 → Ile replacement. Arch Biochem Biophys 288:261–269

    CAS  PubMed  Google Scholar 

  • Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    CAS  PubMed  Google Scholar 

  • Borst-Pauwels GW, Huygen PL (1972) Comparison of the effect of acidic inhibitors upon anaerobic phosphate uptake and dinitrophenol extrusion by metabolizing yeast cells. Biochim Biophys Acta 288:166–171

    CAS  PubMed  Google Scholar 

  • Brix J, Dietmeier K, Pfanner N (1997) Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J Biol Chem 272:20730–20735

    CAS  PubMed  Google Scholar 

  • Chen P, Johnson P, Sommer T, Jentsch S, Hochstrasser M (1993) Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor. Cell 74:357–369

    CAS  PubMed  Google Scholar 

  • Cornell RB, Northwood IC (2000) Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biochem Sci 25:441–447

    CAS  PubMed  Google Scholar 

  • Das G, Hickey DR, McLendon D, McLendon G, Sherman F (1989) Dramatic thermostabilization of yeast iso-1-cytochrome c by an asparagine → isoleucine replacement at position 57. Proc Natl Acad Sci USA 86:496–499

    CAS  PubMed  Google Scholar 

  • Diekert K, Kroon AI de, Ahting U, Niggemeyer B, Neupert W, Kruijff B de, Lill R (2001) Apocytochrome c requires the TOM complex for translocation across the mitochondrial outer membrane. EMBO J 20:5626–5635

    CAS  PubMed  Google Scholar 

  • Downie JA, Stewart JW, Brockman N, Schweingruber AM, Sherman F (1977) Structural gene for yeast iso-2-cytochrome c. J Mol Biol 113:369–384

    CAS  PubMed  Google Scholar 

  • Dumont ME, Ernst JF, Hampsey DM, Sherman F (1987) Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J 6:235–241

    CAS  PubMed  Google Scholar 

  • Dumont ME, Ernst JF, Sherman F (1988) Coupling of heme attachment to import of cytochrome c into yeast mitochondria. Studies with heme lyase-deficient mitochondria and altered apocytochromes c. J Biol Chem 263:15928–15937

    CAS  PubMed  Google Scholar 

  • Dumont ME, Mathews AJ, Nall BT, Baim SB, Eustice DC, Sherman F (1990) Differential stability of two apo-isocytochromes c in the yeast Saccharomyces cerevisiae. J Biol Chem 265:2733–2739

    CAS  PubMed  Google Scholar 

  • Dyck L van, Lange T (1999) ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae. Cell Mol Life Sci 56:825–842

    PubMed  Google Scholar 

  • Dyck L van, Pearce DA, Sherman F (1994) PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J Biol Chem 269:238–242

    PubMed  Google Scholar 

  • Dyck L van, Neupert W, Langer T (1998) The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev 12:1515–1524

    Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC (1982) The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299:371–374

    CAS  PubMed  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC (1984) The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci USA 81:140–144

    CAS  PubMed  Google Scholar 

  • Epand RM, Hui SW, Argan C, Gillespie LL, Shore GC (1986) Structural analysis and amphiphilic properties of a chemically synthesized mitochondrial signal peptide. J Biol Chem 261:10017–10020

    CAS  PubMed  Google Scholar 

  • Esser K, Tursun B, Ingenhoven M, Michaelis G, Pratje E (2002) A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1. J Mol Biol 323:835–843

    CAS  PubMed  Google Scholar 

  • Gu Z, Moerschell RP, Sherman F, Goldfarb DS (1992) NIP1, a gene required for nuclear transport in yeast. Proc Natl Acad Sci USA 89:10355–10359

    CAS  PubMed  Google Scholar 

  • Guélin E, Rep M, Grivell LA (1994) Sequence of the AFG3 gene encoding a new member of the FtsH/Yme1/Tma subfamily of the AAA-protein family. Yeast 10:1389–1394

    PubMed  Google Scholar 

  • Hampsey DM, Das G, Sherman F (1988a) Yeast iso-1-cytochrome c: genetic analysis of structural requirements. FEBS Lett 231:275–283

    CAS  PubMed  Google Scholar 

  • Hampsey DM, Ernst JF, Stewart JW, Sherman F (1988b) Multiple base-pair mutations in yeast. J Mol Biol 201:471–486

    CAS  PubMed  Google Scholar 

  • Herlan M, Vogel F, Bornhovd C, Neupert W, Reichert AS (2003) Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 278:27781–27788

    CAS  PubMed  Google Scholar 

  • Herman C, Thevenet D, D’Ari R, Bouloc P (1997) The HflB protease of Escherichia coli degrades its inhibitor lambda cIII. J Bacteriol 179:358–363

    CAS  PubMed  Google Scholar 

  • Hickey DR, Jayaraman K, Goodhue CT, Shah J, Fingar SA, Clements JM, Hosokawa Y, Tsunasawa S, Sherman F (1991a) Synthesis and expression of genes encoding tuna, pigeon, and horse cytochromes c in the yeast Saccharomyces cerevisiae. Gene 105:73–81

    CAS  PubMed  Google Scholar 

  • Hickey DR, Berghuis AM, Lafond G, Jaeger JA, Cardillo TS, McLendon Das DG, Sherman F, Brayer GD, McLendon G (1991b) Enhanced thermodynamic stabilities of yeast iso-1-cytochromes c with amino acid replacements at positions 52 and 102. J Biol Chem 226:11686–11694

    Google Scholar 

  • Hochstrasser M, Ellison MJ, Chau V, Varshavsky A (1991) The short-lived MATα2 transcriptional regulator is ubiquitinated in vivo. Proc Natl Acad Sci USA 88:4606–4610

    CAS  PubMed  Google Scholar 

  • Johnson JE, Cornell RB (1999) Amphitropic proteins: regulation by reversible membrane interactions. Mol Membr Biol 16:217–235

    CAS  PubMed  Google Scholar 

  • Johnson PR, Swanson R, Rakhilina L, Hochstrasser M (1998) Degradation signal masking by heterodimerization of MATα2 and MATa1 blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell 94:217–227

    CAS  PubMed  Google Scholar 

  • Kominsky DJ, Thorsness PE (2000) Expression of the Saccharomyces cerevisiae gene YME1 in the petite-negative yeast Schizosaccharomyces pombe converts it to a petite-positive yeast. Genetics 154:147–154

    CAS  PubMed  Google Scholar 

  • Kominsky DJ, Brownson MP, Updike DL, Thorsness PE (2002) Genetic and biochemical basis for viability of yeast lacking mitochondrial genomes. Genetics 162:1595–1604

    CAS  PubMed  Google Scholar 

  • Korbel D, Wurth S, Kaser M, Langer T (2004) Membrane protein turnover by the m-AAA protease in mitochondria depends on the transmembrane domains of its subunits. EMBO Rep 5:698–703

    CAS  PubMed  Google Scholar 

  • Kovac L, Bohmerova E, Butko P (1982) Ionophores and intact cells. I. Valinomycin and nigericin act preferentially on mitochondria and not on the plasma membrane of Saccharomyces cerevisiae. Biochim Biophys Acta 721:341–348

    CAS  PubMed  Google Scholar 

  • Lancashire WE, Mattoon JR (1979) Genetic manipulation of a latent defect in yeast cytochrome biosynthesis utilizing cytoduction. Biochem Biophys Res Commun 90:801–809

    CAS  PubMed  Google Scholar 

  • Lemaire C, Hamel P, Velours J, Dujardin G (2000) Absence of the mitochondrial AAA protease Yme1p restores F0-ATPase subunit accumulation in an oxa1 deletion mutant of Saccharomyces cerevisiae. J Biol Chem 275:23471–23475

    CAS  PubMed  Google Scholar 

  • Leonhard K, Herrmann JM, Stuart RA, Mannhaupt G, Neupert W, Langer T (1996) AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner-membrane proteins in mitochondria. EMBO J 15:4218–4229

    CAS  PubMed  Google Scholar 

  • Leonhard K, Stiegler A, Neupert W, Langer T (1999) Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398:348–351

    CAS  PubMed  Google Scholar 

  • Leonhard K, Guiard B, Pellecchia G, Tzagoloff A, Neupert W, Langer T (2000) Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol Cell 5:629–638

    CAS  PubMed  Google Scholar 

  • Li WZ, Sherman F (1991) Two types of TATA elements for the CYC1 gene of the yeast Saccharomyces cerevisiae. Mol Cell Biol 11:666–676

    CAS  PubMed  Google Scholar 

  • Linske-O’Connell LI, Sherman F, McLendon G (1995) Site specific combinations of stabilizing and destabilizing amino acid replacements in yeast cytochrome c: in vivo and in vitro effects. Biochemistry 34:7103–7112

    CAS  PubMed  Google Scholar 

  • Louie GV, Hutcheon WL, Brayer GD (1988) Yeast iso-1-cytochrome c. A 2.8 Å resolution three-dimensional structure determination. J Mol Biol 199:295–314

    CAS  PubMed  Google Scholar 

  • Luciano P, Geli V (1996) The mitochondrial processing peptidase: function and specificity. Experientia 52:1077–1082

    CAS  PubMed  Google Scholar 

  • Matner RR, Sherman F (1982) Differential accumulation of two apo-iso-cytochromes c in processing mutants of yeast. J Biol Chem 257:9811–9821

    CAS  PubMed  Google Scholar 

  • Moerschell RP, Tsunasawa S, Sherman F (1988) Transformation of yeast with synthetic oligonucleotides. Proc Natl Acad Sci USA 85:524–528

    CAS  PubMed  Google Scholar 

  • Moerschell RP, Hosokawa Y, Tsunasawa S, Sherman F (1990) The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation. J Biol Chem 265:19638–19643

    CAS  PubMed  Google Scholar 

  • Nakai T, Yasuhara T, Fujiki Y, Ohashi A (1995) Multiple genes, including a member of the AAA family, are essential for degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Mol Cell Biol 15:4441–4452

    CAS  PubMed  Google Scholar 

  • Nicholls P (1974) Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta 346:261–310

    CAS  PubMed  Google Scholar 

  • Pajic A, Tauer R, Feldmann H, Neupert W, Langer T (1994) Yta10p is required for the ATP-dependent degradation of polypeptides in the inner-membrane of mitochondria. FEBS Lett 353:201–206

    CAS  PubMed  Google Scholar 

  • Pearce DA, Sherman F (1995a) Diminished degradation of yeast cytochrome c by interactions with its physiological partners. Proc Natl Acad Sci USA 92:3735–3739

    CAS  PubMed  Google Scholar 

  • Pearce DA, Sherman F (1995b) Enhanced stability in vivo of a thermodynamically stable mutant form of yeast iso-1-cytochrome c. Mol Gen Genet 249:155–161

    CAS  PubMed  Google Scholar 

  • Pearce DA, Sherman F (1995c). Degradation of cytochrome oxidase subunits in mutants of yeast lacking cytochome c, and suppression of the degradation by mutation of yme1. J Biol Chem 270:20879–20882

    CAS  PubMed  Google Scholar 

  • Pearce DA, Sherman F (1997) Differential ubiquitin-dependent degradation of the yeast apo-cytochrome c isozymes. J Biol Chem 272:31829–31836

    CAS  PubMed  Google Scholar 

  • Pearce DA, Sherman F (1998) Degradation of yeast cytochromes c dependent and independent on its physiological partners. Arch Biochem Biophys 352:85–96

    CAS  PubMed  Google Scholar 

  • Prakash L, Sherman F (1973) Mutagenic specificity: reversion of iso-1-cytochrome c mutants of yeast. J Mol Biol 79:65–82

    CAS  PubMed  Google Scholar 

  • Pretlow TP, Sherman F (1967) Porphyrins and zinc porphyrins in normal and mutant strains of yeast. Biochim Biophys Acta 148:629–644

    CAS  Google Scholar 

  • Rep M, van Dijl JM, Suda K, Schatz G, Grivell LA, Suzuki CK (1996) Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon. Science 274:103–106

    CAS  PubMed  Google Scholar 

  • Roise D, Horvath SJ, Tomich JM, Richards JH, Schatz G (1986) A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5:1327–1334

    CAS  PubMed  Google Scholar 

  • Roise D, Theiler F, Horvath SJ, Tomich JM, Richards JH, Allison DS, Schatz G (1988) Amphiphilicity is essential for mitochondrial presequence function. EMBO J 7:649–653

    CAS  PubMed  Google Scholar 

  • Russo P, Li WZ, Hampsey DM, Zaret KS, Sherman F (1991) Distinct cis-acting signals enhance 3′ endpoint formation of CYC1 mRNA in the yeast Saccharomyces cerevisiae. EMBO J 10:563–571

    CAS  PubMed  Google Scholar 

  • Sadis S, Atienza C Jr, Finley D (1995) Synthetic signals for ubiquitin-dependent proteolysis. Mol Cell Biol 15:4086–4094

    CAS  PubMed  Google Scholar 

  • Sanders HK, Mied PA, Briquet M, Hernandez-Rodriguez J, Gottal RF, Mattoon JR (1973) Regulation of mitochondrial biogenesis: yeast mutants deficient in synthesis of delta-aminolevulinic acid. J Mol Biol 80:17–39

    CAS  PubMed  Google Scholar 

  • Savel’ev AS, Novikova LA, Kovaleva IE, Luzikov VN, Neupert W, Langer T (1998) ATP-dependent proteolysis in mitochondria. m-AAA protease and PIM1 protease exert overlapping substrate specificities and cooperate with the mtHsp70 system. J Biol Chem 273:20596–20602

    CAS  PubMed  Google Scholar 

  • Schagger H, Jagow G von (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    PubMed  Google Scholar 

  • Schiffer M, Edmundson AB (1967) Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J 7:121–135

    CAS  PubMed  Google Scholar 

  • Schnall R, Mannhaupt G, Stucka R, Tauer R, Ehnle S, Schwarzlose C, Vetter I, Feldmann H (1994) Identification of a set of yeast genes coding for a novel family of putative ATPases with high similarity to constituents of the 26S protease complex. Yeast 10:1141–1155

    CAS  PubMed  Google Scholar 

  • Sesaki H, Southard SM, Hobbs AE, Jensen RE (2003) Cells lacking Pcp1p/Ugo2p, a rhomboid-like protease required for Mgm1p processing, lose mtDNA and mitochondrial structure in a Dnm1p-dependent manner, but remain competent for mitochondrial fusion. Biochem Biophys Res Commun 308:276–283

    CAS  PubMed  Google Scholar 

  • Sherman F, Stewart JW (1974) Variation of mutagenic action on nonsense mutants at different sites in the iso-1-cytochrome c gene of yeast. Genetics 78:97–113

    CAS  PubMed  Google Scholar 

  • Sherman F, Taber H, Campbell W (1965) Genetic determination of iso-cytochromes c in yeast. J Mol Biol 13:21–39

    CAS  PubMed  Google Scholar 

  • Sherman F, Stewart JW, Jackson M, Gilmore RA, Parker JH (1974) Mutants of yeast defective in iso-1-cytochrome c. Genetics 77:255–284

    CAS  PubMed  Google Scholar 

  • Sherman F, Jackson M, Liebman SW, Schweingruber AM, Stewart JW (1975) A deletion map of cyc1 mutants and its correspondence to mutationally altered iso-1-cytochromes c of yeast. Genetics 81:51–73

    CAS  PubMed  Google Scholar 

  • Steglich G, Neupert W, Langer T (1999) Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol Cell Biol 19:3435–3442

    CAS  PubMed  Google Scholar 

  • Taneva S, Johnson JE, Cornell RB (2003) Lipid-induced conformational switch in the membrane binding domain of CTP: phosphocholine cytidylyltransferase. Biochemistry 42:11768–11776

    CAS  PubMed  Google Scholar 

  • Tauer R, Mannhaupt G, Schnall R, Pajic A, Langer T, Feldmann H (1994) Yta10p, a member of a novel ATPase family in yeast, is essential for mitochondrial function. FEBS Lett 353:197–200

    CAS  PubMed  Google Scholar 

  • Thorsness PE, White KH, Fox TD (1993) Inactivation of YME1, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 13:5418–5426

    CAS  PubMed  Google Scholar 

  • Tzagoloff A, Yue J, Jang J, Paul MF (1994) A new member of a family of ATPases is essential for assembly of mitochondrial respiratory chain and ATP synthetase complexes in Saccharomyces cerevisiae. J Biol Chem 269:26144–26151

    CAS  PubMed  Google Scholar 

  • Walsh MC, Smits HP, Dam K van (1994) Respiratory inhibitors affect incorporation of glucose into Saccharomyces cerevisiae cells, but not the activity of glucose transport. Yeast 10:1553–1558

    CAS  PubMed  Google Scholar 

  • Wang X, Dumont ME, Sherman F (1996) Sequence requirements for mitochondrial import of yeast cytochrome c. J Biol Chem 271:6594–6604

    CAS  PubMed  Google Scholar 

  • Wang G, Louis JM, Sondej M, Seok YJ, Peterkofsky A, Clore GM (2000a) Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIAglucose of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. EMBO J 19:5635–5649

    CAS  PubMed  Google Scholar 

  • Wang G, Peterkofsky A, Clore GM (2000b) A novel membrane anchor function for the N-terminal amphipathic sequence of the signal-transducing protein IIAGlucose of the Escherichia coli phosphotransferase system. J Biol Chem 275:39811–39814

    CAS  PubMed  Google Scholar 

  • Wang G, Keifer PA, Peterkofsky A (2003) Solution structure of the N-terminal amphitropic domain of Escherichia coli glucose-specific enzyme IIA in membrane-mimetic micelles. Protein Sci 12:1087–1096

    Google Scholar 

  • Weber ER, Rooks RS, Shafer KS, Chase JW, Thorsness PE (1995) Mutations in the mitochondrial ATP synthase gamma subunit suppress a slow-growth phenotype of yme1 yeast lacking mitochondrial DNA. Genetics 140:435–442

    CAS  PubMed  Google Scholar 

  • Wei J, Sherman F (2004) Sue1p is required for degradation of labile forms of altered cytochromes c in yeast mitochondria. J Biol Chem 279:30449–30458

    CAS  PubMed  Google Scholar 

  • Wiedemann N, Kozjak V, Prinz T, Ryan MT, Meisinger C, Pfanner N, Truscott KN (2003) Biogenesis of yeast mitochondrial cytochrome c: a unique relationship to the TOM machinery. J Mol Biol 327:465–474

    CAS  PubMed  Google Scholar 

  • Wiedemann N, Frazier AE, Pfanner N (2004) The protein import machinery of mitochondria. J Biol Chem 279:14473–14476

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Moerschell RP, Wakem LP, Ferguson D, Sherman F (1992a) Parameters affecting the frequencies of transformation and co-transformation with synthetic oligonucleotides in yeast. Yeast 8:935–948

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Moerschell RP, Wakem LP, Komar-Panicucci S, Sherman F (1992b) Strand-specificity in the transformation of yeast with synthetic oligonucleotides. Genetics 131:811–819

    CAS  PubMed  Google Scholar 

  • Yun DF, Laz TM, Clements JM, Sherman F (1996) mRNA sequences influencing translation and the selection of AUG initiator codons in the yeast Saccharomyces cerevisiae. Mol Microbiol 19:1225–1239

    Google Scholar 

Download references

Acknowledgement

This work was supported by grant R01 GM12702 from the United States National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Sherman.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Moerschell, R.P., Pearce, D.A. et al. Enhanced mitochondrial degradation of yeast cytochrome c with amphipathic structures. Curr Genet 47, 67–83 (2005). https://doi.org/10.1007/s00294-004-0552-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0552-2

Keywords

Navigation