Skip to main content
Log in

Isolation of a Leptothrix Strain, OUMS1, from Ocherous Deposits in Groundwater

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Leptothrix species in aquatic environments produce uniquely shaped hollow microtubules composed of aquatic inorganic and bacterium-derived organic hybrids. Our group termed this biologically derived iron oxide as “biogenous iron oxide (BIOX)”. The artificial synthesis of most industrial iron oxides requires massive energy and is costly while BIOX from natural environments is energy and cost effective. The BIOX microtubules could potentially be used as novel industrial functional resources for catalysts, adsorbents and pigments, among others if effective and efficient applications are developed. For these purposes, a reproducible system to regulate bacteria and their BIOX productivity must be established to supply a sufficient amount of BIOX upon industrial demand. However, the bacterial species and the mechanism of BIOX microtubule formation are currently poorly understood. In this study, a novel Leptothrix sp. strain designated OUMS1 was successfully isolated from ocherous deposits in groundwater by testing various culture media and conditions. Morphological and physiological characters and elemental composition were compared with those of the known strain L. cholodnii SP-6 and the differences between these two strains were shown. The successful isolation of OUMS1 led us to establish a basic system to accumulate biological knowledge of Leptothrix and to promote the understanding of the mechanism of microtubule formation. Additional geochemical studies of the OUMS1-related microstructures are expected provide an attractive approach to study the broad industrial application of bacteria-derived iron oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BIOX:

Biogenous iron oxide

DAPI:

4′,6-Diamidino-2-phenylindole

EDX:

Energy-dispersive X-ray spectroscopy

GP:

Groundwater phosphate

ICP:

Inductively coupled plasma mass spectrometry

MSV:

Mineral solution vitamin

MSVP:

Mineral solution vitamin pyruvate

SEM:

Scanning electron microscopy

SIGP:

Silicon iron glucose peptone

References

  1. Akopyanz N, Bukanov NO, Westblom TU et al (1992) DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res 20:5137–5142

    Article  PubMed  CAS  Google Scholar 

  2. Boogerd FC, De Vrind JPM (1987) Manganese oxidation by Leptothrix discophora. J Bacteriol 169:489–494

    PubMed  CAS  Google Scholar 

  3. Boonfueng T, Axe L, Yee N et al (2009) Zn-sorption mechanisms onto sheathed Leptothrix discophora and the impact of the nanoparticulate biogenic Mn oxide coating. J Colloid Interface Sci 333:439–447

    Article  PubMed  CAS  Google Scholar 

  4. Chan CS, Stasio GD, Welch SA et al (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303:1656–1658

    Article  PubMed  CAS  Google Scholar 

  5. Chan CS, Fakra SC, Edwards DC et al (2009) Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim Cosmochim Acta 73:3807–3818

    Article  CAS  Google Scholar 

  6. Dickinson W, Caccavo FJ, Olesen B et al (1997) Ennoblement of stainless steel by the manganese-depositing bacterium Leptothrix discophora. Appl Environ Microbiol 63:2502–2506

    PubMed  CAS  Google Scholar 

  7. Duckworth OW, Holmstrom SJM, Pena J et al (2009) Biogeochemistry of iron oxidation in a circumneutral freshwater habitat. Chem Geol 260:149–158

    Article  CAS  Google Scholar 

  8. Emerson D, Ghiorse WC (1992) Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl Environ Microbiol 58:4001–4010

    PubMed  CAS  Google Scholar 

  9. Emerson D, Ghiorse WC (1993) Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. J Bacteriol 175:7808–7818

    PubMed  CAS  Google Scholar 

  10. Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63:4784–4792

    PubMed  CAS  Google Scholar 

  11. Emerson D, Revsbech NP (1994) Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Appl Environ Microbiol 60:4022–4031

    PubMed  CAS  Google Scholar 

  12. Emerson D, Revsbech NP (1994) Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: laboratory studies. Appl Environ Microbiol 60:4032–4038

    PubMed  CAS  Google Scholar 

  13. Emerson D, Weiss JV, Megonigal JP (1999) Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl Environ Microbiol 65:2758–2761

    PubMed  CAS  Google Scholar 

  14. Ghiorse WC (1984) Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol 38:515–550

    Article  PubMed  CAS  Google Scholar 

  15. Gorby YA, Yanina S, McLean JS et al (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103:11358–11363

    Article  PubMed  CAS  Google Scholar 

  16. Hallbeck L, Stahl F, Pedersen K (1993) Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J Gen Microbiol 139:1531–1535

    PubMed  CAS  Google Scholar 

  17. Hashimoto H, Yokoyama S, Asaoka H et al (2007) Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix ochracea. J Magn Magn Mater 310:2405–2407

    Article  CAS  Google Scholar 

  18. Iman A, Gheriany E, Bociorga D et al (2009) Iron requirement for Mn(II) oxidation by Leptothrix discophora SS-1. Appl Environ Microbiol 75:1229–1235

    Article  Google Scholar 

  19. Ivarson KC, Sojak M (1978) Microorganisms and ochre deposits in field drains of Ontario. Can J Soil Sci 58:1–17

    Article  CAS  Google Scholar 

  20. Kennedy CB, Scott SD, Ferris FG (2003) Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean. FEMS Microbiol Ecol 43:247–254

    Article  PubMed  CAS  Google Scholar 

  21. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, NY, pp 115–175

    Google Scholar 

  22. Mouchet P (1992) From conventional to biological removal of iron and manganese in France. J Am Water Works Assoc 84:158–167

    CAS  Google Scholar 

  23. Mulder EG, van Veen WL (1963) Investigations on the SphaerotilusLeptothrix group. Antonie Leeuwenhoek 29:121–153

    Article  PubMed  CAS  Google Scholar 

  24. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  25. Ranjan R, Grover A, Kapardar RK et al (2005) Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem Biophys Res Commun 335:57–65

    Article  PubMed  CAS  Google Scholar 

  26. Rentz JA, Kraiya C, Luther GW III et al (2007) Control of ferrous iron oxidation within circumneutral microbial iron mats by cellular activity and autocatalysis. Environ Sci Technol 41:6084–6089

    Article  PubMed  CAS  Google Scholar 

  27. Romano AH, Peloquin JP (1963) Composition of the sheath of Sphaerotilus natans. J Bacteriol 86:252–258

    PubMed  CAS  Google Scholar 

  28. Sakai T, Miyazaki Y, Murakami A et al (2010) Chemical modification of biogenous iron oxide to create an excellent enzyme scaffold. Org Biomol Chem 8:336–338

    Article  PubMed  CAS  Google Scholar 

  29. Siering PL, Ghiorse WC (1997) Development and application of 16S rRNA-targeted probes for detection of iron- and manganese-oxidizing sheathed bacteria in environmental samples. Appl Environ Microbiol 63:644–651

    PubMed  CAS  Google Scholar 

  30. Spring S (2006) The genera Leptothrix and Sphaerotilus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 5, chapter 3.2.11, pp 758–777

  31. Spring S, Kämpfer P, Ludwig W et al (1996) Polyphasic characterization of the genus Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend. Syst Appl Microbiol 19:634–643

    CAS  Google Scholar 

  32. Starkey RL (1945) Transformations of iron by bacteria in water. J Am Water Works Assoc 37:963–984

    CAS  Google Scholar 

  33. van Veen WL, Mulder EG, Deinema MH (1978) The Sphaerotilus-Leptothrix group of bacteria. Microbiol Rev 42:329–356

    PubMed  Google Scholar 

  34. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grant-in-aid for a special research project (2008–2013) from the Ministry of Education, Science, Culture, and Sports of Japan. We are indebted to Professor Ralph Mitchell of the School of Applied Science and Environment, Harvard University, USA, for his critical reviewing and valuable suggestions. We are also grateful for the invaluable advice and suggestions of Professors M. Seno, T. Shiraishi, T. Toyoda, T. Fujii, M. Nakanishi, and T. Kanao of the School of Natural Sciences and Technology, Okayama University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Takada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawayama, M., Suzuki, T., Hashimoto, H. et al. Isolation of a Leptothrix Strain, OUMS1, from Ocherous Deposits in Groundwater. Curr Microbiol 63, 173–180 (2011). https://doi.org/10.1007/s00284-011-9957-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9957-6

Keywords

Navigation