Skip to main content

Advertisement

Log in

In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background The efficacy and tolerability of paclitaxel is limited by its low solubility, high systemic exposure, and a lack of selective tumor uptake. Paclitaxel poliglumex (PPX; XYOTAX™) is a macromolecular drug conjugate that was developed to overcome these limitations; the 2′ hydroxyl group of paclitaxel is linked to a biodegradable polymer, poly-l-glutamic acid, to form an inactive polymeric conjugate. PPX was previously shown to accumulate in tumor tissue, presumably by taking advantage of the hyperpermeable tumor vasculature and suppressed lymphatic clearance in tumor tissue. Methods Because anti-tumor activity requires the release of paclitaxel from the polymer-drug conjugate, the current report characterizes PPX biodegradation and release of paclitaxel as determined by quantitative HPLC/mass spectral analysis. Results The identification of monoglutamyl-paclitaxel metabolites in tumor tissue confirmed the in vivo metabolism of PPX in a panel of mouse tumor models. In vitro characterization of the metabolic pathway suggests that PPX can enter tumor cells, and is metabolized to form both mono- and diglutamyl-paclitaxel cleavage products. The intracellular formation of these intermediate metabolites is at least partially dependent on the proteolytic activity of the lysosomal enzyme cathepsin B; PPX metabolism is inhibited by a highly selective inhibitor of cathepsin B, CA-074. Reduced metabolism of PPX in livers and spleens from cathepsin B deficient mice confirms that cathepsin B is an important mediator of PPX metabolism in vivo; however, other proteolytic enzymes may contribute as well. Conclusions The cathepsin B-mediated release of paclitaxel may have therapeutic implications as cathepsin B is upregulated in malignant cells, particularly during tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achkar C, Gong QM, Frankfater A, Bajkowski AS (1990) Differences in targeting and secretion of cathepsins B and L by BALB/3T3 fibroblasts and Moloney murine sarcoma virus-transformed BALB/3T3 fibroblasts. J Biol Chem 265:13650–13654

    PubMed  CAS  Google Scholar 

  2. Awade AC, Cleuziat P, Gonzales T, Robert-Baudouy J (1994) Pyrrolidone carboxyl peptidase (Pcp): an enzyme that removes pyroglutamic acid (pGlu) from pGlu-peptides and pGlu-proteins. Proteins 20:34–51

    Article  PubMed  CAS  Google Scholar 

  3. Balan KV, Hollis VW, Eckberg WR, Ayorinde F, Karkera JD, Wyche JH, Anderson WA (2001) Cathepsin B and complement C3 are major comigrants in the estrogen-induced peroxidase fraction of rat uterine fluid. J Submicrosc Cytol Pathol 33:221–230

    PubMed  CAS  Google Scholar 

  4. Bhalla KN (2003) Microtubule-targeted anticancer agents and apoptosis. Oncogene 22:9075–9086

    Article  PubMed  CAS  Google Scholar 

  5. Campo E, Munoz J, Miquel R, Palacin A, Cardesa A, Sloane BF, Emmert-Buck MR (1994) Cathepsin B expression in colorectal carcinomas correlates with tumor progression and shortened patient survival. Am J Pathol 145:301–309

    PubMed  CAS  Google Scholar 

  6. Cavallo-Medved D, Mai J, Dosescu J, Sameni M, Sloane BF (2005) Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J Cell Sci 118:1493–1503

    Article  PubMed  CAS  Google Scholar 

  7. Deussing J, Tisljar K, Papazoglou A, Peters C (2000) Mouse cathepsin F: cDNA cloning, genomic organization and chromosomal assignment of the gene. Gene 251:165–173

    Article  PubMed  CAS  Google Scholar 

  8. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  PubMed  CAS  Google Scholar 

  9. Duncan R, Spreafico F (1994) Polymer conjugates. Pharmacokinetic considerations for design and development. Clin Pharmacokinet 27:290–306

    Article  PubMed  CAS  Google Scholar 

  10. Duncan R, Rejmanova P, Kopecek J, Lloyd JB (1981) Pinocytic uptake and intracellular degradation of N-(2-hydroxypropyl)methacrylamide copolymers. A potential drug delivery system. Biochim Biophys Acta 678:143–150

    PubMed  CAS  Google Scholar 

  11. Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I (1987) Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA 84:265–269

    Article  PubMed  CAS  Google Scholar 

  12. Gallagher LJ, Sloane BF (1984) Effect of estrogen on lysosomal enzyme activities in rat heart. Proc Soc Exp Biol Med 177:428–433

    PubMed  CAS  Google Scholar 

  13. Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31:288–305

    Article  PubMed  CAS  Google Scholar 

  14. Goldstein LJ, Galski H, Fojo A, Willingham M, Lai SL, Gazdar A, Pirker R, Green A, Crist W, Brodeur GM et al (1989) Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst 81:116–124

    Article  PubMed  CAS  Google Scholar 

  15. Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H (2003) Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin Pharmacokinet 42:1089–1105

    Article  PubMed  CAS  Google Scholar 

  16. Gueritte-Voegelein F, Guenard D, Lavelle F, Le Goff MT, Mangatal L, Potier P (1991) Relationships between the structure of taxol analogues and their antimitotic activity. J Med Chem 34:992–998

    Article  PubMed  CAS  Google Scholar 

  17. Hirai K, Yokoyama M, Asano G, Tanaka S (1999) Expression of cathepsin B and cystatin C in human colorectal cancer. Hum Pathol 30:680–686

    Article  PubMed  CAS  Google Scholar 

  18. Horton JK, Houghton PJ, Houghton JA (1988) Relationships between tumor responsiveness, vincristine pharmacokinetics and arrest of mitosis in human tumor xenografts. Biochem Pharmacol 37:3995–4000

    Article  PubMed  CAS  Google Scholar 

  19. Hulkower KI, Butler CC, Linebaugh BE, Klaus JL, Keppler D, Giranda VL, Sloane BF (2000) Fluorescent microplate assay for cancer cell-associated cathepsin B. Eur J Biochem 267:4165–4170

    Article  PubMed  CAS  Google Scholar 

  20. Jensen KD, Nori A, Tijerina M, Kopeckova P, Kopecek J (2003) Cytoplasmic delivery and nuclear targeting of synthetic macromolecules. J Control Release 87:89–105

    Article  PubMed  CAS  Google Scholar 

  21. Kos J, Sekirnik A, Premzl A, Zavasnik Bergant V, Langerholc T, Turk B, Werle B, Golouh R, Repnik U, Jeras M, Turk V (2005) Carboxypeptidases cathepsins X and B display distinct protein profile in human cells and tissues. Exp Cell Res 306:103–113

    Article  PubMed  CAS  Google Scholar 

  22. Kremer M, Judd J, Rifkin B, Auszmann J, Oursler MJ (1995) Estrogen modulation of osteoclast lysosomal enzyme secretion. J Cell Biochem 57:271–279

    Article  PubMed  CAS  Google Scholar 

  23. Li C (2002) Poly(l-glutamic acid)—anticancer drug conjugates. Adv Drug Deliv Rev 54:695–713

    Article  PubMed  CAS  Google Scholar 

  24. Li C, Yu DF, Newman RA, Cabral F, Stephens LC, Hunter N, Milas L, Wallace S (1998) Complete regression of well-established tumors using a novel water-soluble poly(l-glutamic acid)-paclitaxel conjugate. Cancer Res 58:2404–2419

    PubMed  CAS  Google Scholar 

  25. Li C, Price JE, Milas L, Hunter NR, Ke S, Yu DF, Charnsangavej C, Wallace S (1999) Antitumor activity of poly(l-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin Cancer Res 5:891–897

    PubMed  CAS  Google Scholar 

  26. Li C, Newman RA, Wu QP, Ke S, Chen W, Hutto T, Kan Z, Brannan MD, Charnsangavej C, Wallace S (2000) Biodistribution of paclitaxel and poly(l-glutamic acid)-paclitaxel conjugate in mice with ovarian OCa-1 tumor. Cancer Chemother Pharmacol 46:416–422

    Article  PubMed  CAS  Google Scholar 

  27. Linebaugh BE, Sameni M, Day NA, Sloane BF, Keppler D (1999) Exocytosis of active cathepsin B enzyme activity at pH 7.0, inhibition and molecular mass. Eur J Biochem 264:100–109

    Article  PubMed  CAS  Google Scholar 

  28. Lorenzo K, Ton P, Clark JL, Coulibaly S, Mach L (2000) Invasive properties of murine squamous carcinoma cells: secretion of matrix-degrading cathepsins is attributable to a deficiency in the mannose 6-phosphate/insulin-like growth factor II receptor. Cancer Res 60:4070–4076

    PubMed  CAS  Google Scholar 

  29. Manfredi JJ, Parness J, Horwitz SB (1982) Taxol binds to cellular microtubules. J Cell Biol 94:688–696

    Article  PubMed  CAS  Google Scholar 

  30. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    PubMed  CAS  Google Scholar 

  31. Murnane MJ, Sheahan K, Ozdemirli M, Shuja S (1991) Stage-specific increases in cathepsin B messenger RNA content in human colorectal carcinoma. Cancer Res 51:1137–1142

    PubMed  CAS  Google Scholar 

  32. Nagler DK, Kruger S, Kellner A, Ziomek E, Menard R, Buhtz P, Krams M, Roessner A, Kellner U (2004) Up-regulation of cathepsin X in prostate cancer and prostatic intraepithelial neoplasia. Prostate 60:109–119

    Article  PubMed  CAS  Google Scholar 

  33. Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, Maeda H (1998) Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 89:307–314

    PubMed  CAS  Google Scholar 

  34. Oda T, Maeda H (1987) Binding to and internalization by cultured cells of neocarzinostatin and enhancement of its actions by conjugation with lipophilic styrene-maleic acid copolymer. Cancer Res 47:3206–3211

    PubMed  CAS  Google Scholar 

  35. Otto HH, Schirmeister T (1997) Cysteine proteases and their inhibitors. Chem Rev 97:133–172

    Article  PubMed  CAS  Google Scholar 

  36. Pellegrin P, Fernandez A, Lamb NJ, Bennes R (2002) Macromolecular uptake is a spontaneous event during mitosis in cultured fibroblasts: implications for vector-dependent plasmid transfection. Mol Biol Cell 13:570–578

    Article  PubMed  CAS  Google Scholar 

  37. Podgorski I, Sloane BF (2003) Cathepsin B and its role(s) in cancer progression. Biochem Soc Symp 70:263–276

    PubMed  CAS  Google Scholar 

  38. Poole AR, Tiltman KJ, Recklies AD, Stoker TA (1978) Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroadenomas. Nature 273:545–547

    Article  PubMed  CAS  Google Scholar 

  39. Raschke WC, Baird S, Ralph P, Nakoinz I (1978) Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15:261–267

    Article  PubMed  CAS  Google Scholar 

  40. Recklies AD, Poole AR, Mort JS (1982) A cysteine proteinase secreted from human breast tumours is immunologically related to cathepsin B. Biochem J 207:633–636

    PubMed  CAS  Google Scholar 

  41. Rempel SA, Rosenblum ML, Mikkelsen T, Yan PS, Ellis KD, Golembieski WA, Sameni M, Rozhin J, Ziegler G, Sloane BF (1994) Cathepsin B expression and localization in glioma progression and invasion. Cancer Res 54:6027–6031

    PubMed  CAS  Google Scholar 

  42. Roberts WG, Palade GE (1997) Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 57:765–772

    PubMed  CAS  Google Scholar 

  43. Rochefort H, Capony F, Augereau P, Cavailles V, Garcia M, Morisset M, Freiss G, Maudelonde T, Vignon F (1987) The estrogen-regulated 52K-cathepsin-D in breast cancer: from biology to clinical applications. Int J Rad Appl Instrum B 14:377–384

    PubMed  CAS  Google Scholar 

  44. Roshy S, Sloane BF, Moin K (2003) Pericellular cathepsin B and malignant progression. Cancer Metastasis Rev 22:271–286

    Article  PubMed  CAS  Google Scholar 

  45. Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332:1004–1014

    Article  PubMed  CAS  Google Scholar 

  46. Sameni M, Elliott E, Ziegler G, Fortgens PH, Dennison C, Sloane BF (1995) Cathepsin B and D are localized at the surface of human breast cancer cells. Pathol Oncol Res 1:43–53

    PubMed  CAS  Google Scholar 

  47. Seymour LW, Miyamoto Y, Maeda H, Brereton M, Strohalm J, Ulbrich K, Duncan R (1995) Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur J Cancer 31A:766–770

    Article  PubMed  CAS  Google Scholar 

  48. Singer JW, Baker B, De Vries P, Kumar A, Shaffer S, Vawter E, Bolton M, Garzone P (2003) Poly-(l)-glutamic acid-paclitaxel (CT-2103) [XYOTAX], a biodegradable polymeric drug conjugate: characterization, preclinical pharmacology, and preliminary clinical data. Adv Exp Med Biol 519:81–99

    Article  PubMed  CAS  Google Scholar 

  49. Singer JW, Shaffer S, Baker B, Bernareggi A, Stromatt S, Nienstedt D, Besman M (2005) Paclitaxel poliglumex (XYOTAX; CT-2103): an intracellularly targeted taxane. Anticancer Drugs 16:243–254

    Article  PubMed  CAS  Google Scholar 

  50. Sinha AA, Quast BJ, Korkowski JC, Wilson MJ, Reddy PK, Ewing SL, Sloane BF, Gleason DF (1999) The relationship of cathepsin B and stefin A mRNA localization identifies a potentially aggressive variant of human prostate cancer within a Gleason histologic score. Anticancer Res 19:2821–2829

    PubMed  CAS  Google Scholar 

  51. Sivaparvathi M, Sawaya R, Wang SW, Rayford A, Yamamoto M, Liotta LA, Nicolson GL, Rao JS (1995) Overexpression and localization of cathepsin B during the progression of human gliomas. Clin Exp Metastasis 13:49–56

    Article  PubMed  CAS  Google Scholar 

  52. Sloane BF, Moin K, Sameni M, Tait LR, Rozhin J, Ziegler G (1994) Membrane association of cathepsin B can be induced by transfection of human breast epithelial cells with c-Ha-ras oncogene. J Cell Sci 107(Pt 2):373–384

    PubMed  CAS  Google Scholar 

  53. Spiess E, Bruning A, Gack S, Ulbricht B, Spring H, Trefz G, Ebert W (1994) Cathepsin B activity in human lung tumor cell lines: ultrastructural localization, pH sensitivity, and inhibitor status at the cellular level. J Histochem Cytochem 42:917–929

    PubMed  CAS  Google Scholar 

  54. Therrien C, Lachance P, Sulea T, Purisima EO, Qi H, Ziomek E, Alvarez-Hernandez A, Roush WR, Menard R (2001) Cathepsins X and B can be differentiated through their respective mono- and dipeptidyl carboxypeptidase activities. Biochemistry 40:2702–2711

    Article  PubMed  CAS  Google Scholar 

  55. ten Tije AJ, Verweij J, Loos WJ, Sparreboom A (2003) Pharmacological effects of formulation vehicles: implications for cancer chemotherapy. Clin Pharmacokinet 42:665–685

    Article  PubMed  CAS  Google Scholar 

  56. Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20:4629–4633

    Article  PubMed  CAS  Google Scholar 

  57. Waters KM, Safe S, Gaido KW (2001) Differential gene expression in response to methoxychlor and estradiol through ERalpha, ERbeta, and AR in reproductive tissues of female mice. Toxicol Sci 63:47–56

    Article  PubMed  CAS  Google Scholar 

  58. Westley BR, May FE (1987) Oestrogen regulates cathepsin D mRNA levels in oestrogen responsive human breast cancer cells. Nucleic Acids Res 15:3773–3786

    Article  PubMed  CAS  Google Scholar 

  59. Yan S, Sloane BF (2003) Molecular regulation of human cathepsin B: implication in pathologies. Biol Chem 384:845–854

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to recognize the following individuals for outstanding technical and intellectual contributions: Martha Anderson, Brian Baker, Garland Bellamy, Rama Bhatt, Lynn Bonham, Scott Burke, Jessica Freiberg, Allison Harmon, Anil Kumar, Ruthanne Naranjo, Ed Nudelman, Clint Reigh, Ivan Stone, and Jennifer Thompson. The authors thank Dr Thomas Reinheckel (University of Freiburg) and Dr Richard Meyers (Stanford University) for providing the transgenic cathepsin B mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack W. Singer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaffer, S.A., Baker-Lee, C., Kennedy, J. et al. In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemother Pharmacol 59, 537–548 (2007). https://doi.org/10.1007/s00280-006-0296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0296-4

Keywords

Navigation