Skip to main content
Log in

An oligarchy of nest-site scouts triggers a honeybee swarm’s departure from the hive

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Animals that travel in groups must synchronize the timing of their departures to assure cohesion of the group. While most activities in large colonies of social insects have decentralized control, certain activities (e.g., colony migration) can have centralized control, with only a special subset of well-informed individuals making a decision that affects the entire colony. We recently discovered that a small minority of individuals in a honeybee colony—an oligarchy—decides when to trigger the departure of a swarm from its hive. The departure process begins with some bees producing the worker-piping signal (the primer for departure) and is followed by these bees producing the buzz-run signal (the releaser for departure). In this study, we determined the identity of these signalers. We found that a swarm’s nest-site scouts search for potential nest cavities prior to the departure of the swarm from its hive. Furthermore, we found that the predeparture nest-site scouts are the sole producers of the worker-piping signal and that they are the first producers of the buzz-run signal. The control of the departure of a honeybee swarm from its hive shows how a small minority of well-informed individuals in a large social insect colony can make important decisions about when a colony should take action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson C, McShea DW (2001) Individual versus social complexity, with particular reference to ant colonies. Biol Rev 76:211–237

    Article  CAS  PubMed  Google Scholar 

  • Boinski S, Campbell AF (1995) Use of trill vocalizations to coordinate troop movement among white-faced capuchins—a 2nd field-test. Behaviour 132:875–901

    Article  Google Scholar 

  • Boinski S, Garber PA (2000) On the move: how and why animals travel in groups. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Buhl J, Sumpter DJ, Couzin ID, Hale JJ, Despland E, Miller ER, Simpson SJ (2006) From disorder to order in marching locusts. Science 312:1402–1406

    Article  CAS  PubMed  Google Scholar 

  • Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Combs GF (1972) The engorgement of swarming worker honeybees. J Apic Res 11:121–128

    Google Scholar 

  • Conradt L, List C (2009) Group decisions in humans and animals: a survey. Phil Trans R Soc B 364:719–742

    Article  PubMed  Google Scholar 

  • Conradt L, Roper TJ (2003) Group decision-making in animals. Nature 421:155–158

    Article  CAS  PubMed  Google Scholar 

  • Conradt L, Roper TJ (2005) Consensus decision making in animals. Trends Ecol Evol 20:449–456

    Article  PubMed  Google Scholar 

  • Conradt L, Roper TJ (2007) Democracy in animals: the evolution of shared group decisions. Proc R Soc B 274:2317–2326

    Article  CAS  PubMed  Google Scholar 

  • Couzin ID (2006) Behavioral ecology: social organization in fission–fusion societies. Curr Biol 16:169–171

    Article  Google Scholar 

  • Dyer FC (2000) Group movement and individual cognition: lessons from social insects. In: Boinski S, Garber PA (eds) On the move: how and why animals travel in groups. University of Chicago Press, Chicago, IL, pp 127–164

    Google Scholar 

  • Fell RD, Ambrose JT, Burgett M, De Jong D, Morse RA, Seeley TD (1977) The seasonal cycle of swarming in honeybees. J Apic Res 16:170–173

    Google Scholar 

  • Forsyth A (1981) Swarming activity of polybiine social wasps (Hymenoptera: Vespidae: Polybiini). Biotropica 13:93–99

    Article  Google Scholar 

  • Franks NR, Pratt SC, Mallon EB, Britton NF, Sumpter DJT (2002) Information flow, opinion polling and collective intelligence in house-hunting social insects. Phil Trans R Soc B 357:1567–1583

    Article  PubMed  Google Scholar 

  • Gilley DC (1998) The identity of nest-site scouts in honey bee swarms. Apidologie 29:229–240

    Article  Google Scholar 

  • Heinrich B (1981) The mechanisms and energetics of honeybee swarm temperature regulation. J Exp Biol 91:25–55

    Google Scholar 

  • Jeanne RL (2003) Social complexity in the Hymenoptera, with special attention to the wasps. In: Kikuchi T, Azuma N, Higashi S (eds) Genes, behaviors and evolution of social insects. Hokkaido University Press, Sapporo, pp 81–130

    Google Scholar 

  • Latty T, Duncan M, Beekman M (2009) High bee traffic disrupts transfer of directional information in flying honeybee swarms. Anim Behav 78:117–121

    Article  Google Scholar 

  • Lindauer M (1955) Schwarmbienen auf Wohnungssuche. Z Vgl Physiol 37:263–324

    Article  Google Scholar 

  • Mallon EB, Pratt SC, Franks NR (2001) Individual and aggregated decision making during nest site selection by the ant Leptothorax albipennis. Behav Ecol Sociobiol 50:352–359

    Article  Google Scholar 

  • Martin P (1963) Die Steuerung der Volksteilung beim Schwärmen der Bienen: zugleich ein Beitrag zum Problem der Wanderschwärme. Insect Soc 10:13–42

    Article  Google Scholar 

  • Pratt SC (2005) Behavioural mechanisms of collective nest-site choice by the ant Temnothorax curvispinosis. Insect Soc 52:383–392

    Article  Google Scholar 

  • Pratt SC, Mallon EB, Sumpter DJT, Franks NR (2002) Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav Ecol Sociobiol 52:117–127

    Article  Google Scholar 

  • Prins HHT (1996) Ecology and behaviour of the African buffalo. Chapman & Hall, London, UK

    Google Scholar 

  • Ramseyer A, Thierry B, Boissy A, Dumont B (2009) Decision-making processes in group departures of cattle. Ethology 115:948–957

    Article  Google Scholar 

  • Rangel J, Seeley TD (2008) The signals initiating the mass exodus of a honey bee swarm from its nest. Anim Behav 76:1943–1952

    Article  Google Scholar 

  • Reebs SG (2000) Can a minority of informed leaders determine the foraging movements of a fish shoal? Anim Behav 59:403–409

    Article  PubMed  Google Scholar 

  • Rittschof CC, Seeley TD (2008) The buzz-run: how honeybees signal ‘Time to go!’. Anim Behav 75:189–197

    Article  Google Scholar 

  • Schultz KM, Passino KM, Seeley TD (2008) The mechanisms of flight guidance in honey bee swarms: subtle guides or streaker bees? J Exp Biol 211:3287–3295

    Article  PubMed  Google Scholar 

  • Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Seeley TD, Morse RA (1978) Nest site selection by the honey bee, Apis mellifera. Insect Soc 25:323–337

    Article  Google Scholar 

  • Seeley TD, Tautz J (2001) Worker piping in honey bee swarms and its role in preparing for liftoff. J Comp Physiol A 187:667–676

    Article  CAS  PubMed  Google Scholar 

  • Seeley TD, Visscher PK (2003) Choosing a home: how the scouts in a honey bee swarm perceive the completion of their group decision making. Behav Ecol Sociobiol 54:511–520

    Article  Google Scholar 

  • Seeley TD, Visscher PK (2004) Group decision making in nest-site selection by honey bees. Apidologie 35:101–116

    Article  Google Scholar 

  • Seeley TD, Morse RA, Visscher PK (1979) The natural history of the flight of honey bee swarms. Psyche 86:103–113

    Article  Google Scholar 

  • Seeley TD, Kleinhenz M, Bujok B, Tautz J (2003) Thorough warm-up before take-off in honey bee swarms. Naturwissenschaften 90:256–260

    Article  CAS  PubMed  Google Scholar 

  • Seeley TD, Visscher PK, Passino KM (2006) Group decision making in honey bee swarms. American Scientist 94:220–229

    Google Scholar 

  • Simpson SJ, Sword GA, Lorch PD, Couzin ID (2006) Cannibal crickets on a forced march for protein and salt. Proc Natl Acad Sci 103:4152–4156

    Article  CAS  PubMed  Google Scholar 

  • Sumpter DJT (2006) The principles of collective animal behaviour. Phil Trans R Soc B 361:5–22

    Article  CAS  PubMed  Google Scholar 

  • Visscher PK (2007) Group decision making in nest-site selection among social insects. Ann Rev Entomol 52:255–275

    Article  CAS  Google Scholar 

  • Visscher PK, Seeley TD (2007) Coordinating a group departure: who produces the piping signals on honeybee swarms? Behav Ecol Sociobiol 61:1615–1621

    Article  Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge, MA

    Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of the Shoals Marine Laboratory of Cornell University on Appledore Island, Maine. Funding was provided to JR by the US National Science Foundation Graduate Research Fellowship Program (Award number DGE 0707428), the State University of New York Graduate Underrepresented Minority Fellowship Program, and the 2008 Lewis and Clark Fund for Exploration and Field Research of the American Philosophical Society. The study was also funded by a grant to SRG from the Hunter R Rawlings III Cornell Presidential Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Rangel.

Additional information

Communicated by M. Beekman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangel, J., Griffin, S.R. & Seeley, T.D. An oligarchy of nest-site scouts triggers a honeybee swarm’s departure from the hive. Behav Ecol Sociobiol 64, 979–987 (2010). https://doi.org/10.1007/s00265-010-0913-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-010-0913-4

Keywords

Navigation