Skip to main content
Log in

Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Xyleborini are a species-rich tribe of ambrosia beetles, which are haplodiploid and typically mate among siblings within their natal brood chamber. Several characteristics of this tribe would predict the evolution of higher levels of sociality: high genetic relatedness within galleries due to inbreeding, high costs of dispersal and the potential benefit of cooperation in brood care within the natal gallery (e.g. by fungus gardening, gallery extension, offspring feeding and cleaning). However, information on the social system of these beetles is very limited. We examined the potential for cooperative breeding in Xyleborinus saxeseni by monitoring dispersal in relation to brood size and composition. Results show that adult female offspring delay dispersal despite dispersal opportunities, and apparently some females never disperse. The females’ decision to stay seems to depend on the presence of eggs and dependent siblings. We found no indication that female offspring reproduce in their natal gallery, as colonies with many mature daughters do not contain more eggs than those with few or no daughters. There is a significant positive relationship between the number of females present and the number of dependent siblings (but not eggs), which suggests that cooperative brood care of female offspring raises colony productivity by improving survival rates of immatures. Our results suggest that cooperative breeding is likely to occur in X. saxeseni and possibly other xyleborine species. We argue that a closer look at sociality within this tribe may yield important information on the factors determining the evolution of cooperative breeding and advanced social organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aanen DK, Eggleton P, Rouland-Lefévre C, Guldberg-Frøslev T, Boomsma JJ, Rosendahl S (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA 99:14887–14892

    Article  PubMed  CAS  Google Scholar 

  • Alexander RD, Noonan KM, Crespi BJ (1991) The evolution of eusociality. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole rat. Princeton University Press, Princeton, pp 1–44

    Google Scholar 

  • Aoki S (1977) Colophina clematis (Homoptera, Pemphigidae), an aphid species with soldiers. Kontyu 45:276–282

    Google Scholar 

  • Batra LR (1966) Ambrosia fungi: extent of specificity to ambrosia beetles. Science 153:193–195

    Article  PubMed  Google Scholar 

  • Bignell D, Eggleton P (2000) Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Bischoff LL (2004) The social structure of the haplodiploid bark beetle, Xylosandrus germanus. MSc Thesis, University of Berne, Switzerland

  • Chapman TW, Crespi BJ, Kranz BD, Schwarz MP (2000) High relatedness and inbreeding at the origin of eusociality in gall-inducing thrips. Proc Natl Acad Sci USA 97:1648–1650

    Article  PubMed  CAS  Google Scholar 

  • Crespi BJ (1992) Eusociality in Australian gall thrips. Nature 359:724–726

    Article  Google Scholar 

  • Crespi B, Choe JC (1997) Introduction. In: Choe JC, Crespi B (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 1–7

    Google Scholar 

  • Crespi BJ, Mound LA (1997) Ecology and evolution of social behaviour among Australian gall thrips and their allies. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 166–180

    Google Scholar 

  • Duffy JE (1996) Eusociality in a coral-reef shrimp. Nature 381:512–514

    Article  CAS  Google Scholar 

  • Eichhoff W (1881) Die Europäischen Borkenkäfer. Julius Springer, Berlin

    Google Scholar 

  • Emlen ST (1994) Benefits, constraints and the evolution of the family. Trends Ecol Evol 9:282–285

    Article  Google Scholar 

  • Farrell BD, Sequeira AS, O’Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027

    Article  PubMed  CAS  Google Scholar 

  • Fischer M (1954) Untersuchungen über den kleinen Holzbohrer (Xyleborus saxeseni). Pflanzenschutzberichte 12:137–180

    CAS  Google Scholar 

  • Gadagkar R (1990) Evolution of eusociality: the advantage of assured fitness returns. Phil Trans R Soc Lond B 329:17–25

    Article  Google Scholar 

  • Gagne JA, Kearby WH (1979) Life history, development and insect–host relationships of Xyleborus celsus (Coleoptera: Scolytidae) in Missouri. Can Entomol 111:295–304

    Google Scholar 

  • Hadorn C (1933) Recherche sur la morphologie, les stades évolutifs et l’hivernage du bostryche liseré (Xyloterus lineatus Oliv.). Z Schweiz Forstvereins (Suppl) 11:1–20

    Google Scholar 

  • Helms Cahan S, Sundström L, Liebig J, Griffin A (2002) Social trajectories and the evolution of social behaviour. Oikos 96:206–216

    Article  Google Scholar 

  • Hopkins AD (1898) On the history and habits of the “wood engraver” ambrosia beetle—Xyleborus xylographus (Say), Xyleborus saxeseni (Ratz.)—with brief description of different stages. Can Entomol 30:21–29

    Article  Google Scholar 

  • Hosking GB (1972) Xyleborus saxeseni, its life-history and flight behaviour in New Zealand. N Z J For Sci 3:37–53

    Google Scholar 

  • Jordal BH, Normark BB, Farrell BD (2000) Evolutionary radiation of an inbreeding haplodiploid beetle lineage (Curculionidae, Scolytinae). Biol J Linn Soc 71:483–499

    Article  Google Scholar 

  • Kent DS, Simpson JA (1992) Eusociality in the beetle Austroplatypus incompertus (Coleoptera: Platypodidae). Naturwissenschaften 79:86–87

    Article  Google Scholar 

  • Kingsolver JG, Norris DM (1977) The interaction of Xyleborus ferrugineus (Fabr.) (Coleoptera: Scolytidae) behavior and initial reproduction in relation to its symbiotic fungi. Ann Entomol Soc Am 70:1–4

    Google Scholar 

  • Kirkendall LR (1993) Ecology and evolution of biased sex ratios in bark and ambrosia beetles. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio in insects and mites. Chapman & Hall, New York, pp 235–345

    Google Scholar 

  • Kirkendall LR, Kent DS, Raffa KF (1997) Interactions among males, females and offspring in bark and ambrosia beetles: the significance of living in tunnels for the evolution of social behavior. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 181–215

    Google Scholar 

  • Koenig WD, Pitelka FA, Carmen WJ, Mumme RL (1992) The evolution of delayed dispersal in cooperative breeders. Q Rev Biol 67:111–150

    Article  PubMed  CAS  Google Scholar 

  • Korb J, Lenz M (2004) Reproductive decision-making in the termite, Cryptotermes secundus (Kalotermitidae), under variable food conditions. Behav Ecol 15:390–395

    Article  Google Scholar 

  • McNee WR, Wood DL, Storer AJ (2000) Pre-emergence feeding in bark beetles (Coleoptera : Scolytidae). Environ Entomol 29:495–501

    Article  Google Scholar 

  • Merkl O, Tusnadi CsK (1992) First introduction of Xyleborus affinis (Coleoptera: Scolytidae), a pest of Dracaena fragrans ‘Massangeana’, to Hungary. Folia Entomol Hung 52:67–72

    Google Scholar 

  • Mitteldorf J, Wilson DS (2000) Population viscosity and the evolution of altruism. J Theor Biol 204:481–496

    Article  PubMed  CAS  Google Scholar 

  • Normark BB, Jordal BH, Farrell BD (1999) Origin of a haplodiploid beetle lineage. Proc R Soc Lond B 266:2253–2259

    Article  Google Scholar 

  • Peer K, Taborsky M (2004) Female ambrosia beetles adjust their offspring sex ratio according to outbreeding opportunities for their sons. J Evol Biol 17:257–264

    Article  PubMed  CAS  Google Scholar 

  • Peer K, Taborsky M (2005) Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. Evolution 59:317–323

    Article  PubMed  Google Scholar 

  • Reeve HK, Westneat DF, Noon WA, Sherman PW, Aquadro CF (1990) DNA ‘fingerprinting’ reveals high levels of inbreeding in colonies of the eusocial naked mole rat. Proc Natl Acad Sci USA 87:2496–2500

    Article  PubMed  CAS  Google Scholar 

  • Roeper R, Treeful LM, O’Brien KM, Foote RA, Bunce MA (1980) Life history of the ambrosia beetle Xyleborus affinis (Coleoptera: Scolytidae) from in vitro culture. Great Lakes Entomol 13:141–144

    Google Scholar 

  • Roisin Y (1999) Philopatric reproduction, a prime mover in the evolution of eusociality? Insectes Soc 46:297–305

    Article  Google Scholar 

  • Saito Y (1997) Sociality and kin selection in Acari. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 443–457

    Google Scholar 

  • Saunders JL, Norris DM, Knoke JK (1967) Insect–host tissue interrelations between Xyleborus ferrugineus (Coleoptera: Scolytidae) and Theobroma cacao in Costa Rica. Ann Entomol Soc Am 60:419–423

    Google Scholar 

  • Schneider I (1987) Verbreitung, Pilzübertragung und Brutsystem des Ambrosiakäfers Xyleborus affinis im Vergleich mit X. mascarensis (Coleoptera: Scolytidae). Entomol Gen 12:267–275

    Google Scholar 

  • Schwenke W (1974) Die Forstschädlinge Europas. Paul Parey, Hamburg

    Google Scholar 

  • Sherman PW, Lacey EA, Reeve HK, Keller L (1995) The eusociality continuum. Behav Ecol 6:102–108

    Article  Google Scholar 

  • Smith DR, Hagen RH (1996) Population structure and interdemic selection in the cooperative spider Anelosimus eximius. J Evol Biol 9:589–608

    Article  Google Scholar 

  • Taylor PD (1992a) Altruism in viscous populations—an inclusive fitness model. Evol Ecol 6:352–356

    Article  Google Scholar 

  • Taylor PD (1992b) Inclusive fitness in a homogeneous environment. Proc R Soc Lond B 249:299–302

    Article  Google Scholar 

  • Thorne BL (1997) Evolution of eusociality in termites. Ann Rev Ecolog Syst 28:27–54

    Article  Google Scholar 

  • Wade MJ (1980) An experimental study of kin selection. Evolution 34:844–855

    Article  Google Scholar 

  • West SA, Pen I, Griffin AS (2002) Conflict and cooperation - Cooperation and competition between relatives. Science 296:72-75

    Article  PubMed  CAS  Google Scholar 

  • Wilson DS (2001) Cooperation and altruism. In: Fox CW, Roff DA, Fairbairn DJ (eds) Evolutionary ecology: concepts and case studies. Oxford University Press, Oxford, pp 222–231

    Google Scholar 

Download references

Acknowledgment

We thank Ralph Bergmueller, Laurent Keller, Lawrence Kirkendall and anonymous referees for comments on previous drafts of the manuscript, and Dik Heg and Barbara Tschirren for statistical advice. The investigations comply with the current laws of Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Taborsky.

Additional information

Communicated by D. Gwynne

Appendix

Appendix

Table 2 Gallery composition in the presence and absence of adult female offspring

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peer, K., Taborsky, M. Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles. Behav Ecol Sociobiol 61, 729–739 (2007). https://doi.org/10.1007/s00265-006-0303-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-006-0303-0

Keywords

Navigation