Skip to main content

Advertisement

Log in

A humanized anti-osteopontin antibody inhibits breast cancer growth and metastasis in vivo

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

An Erratum to this article was published on 07 January 2010

Abstract

Osteopontin (OPN) has been implicated as an important mediator of breast cancer progression and metastasis and has been investigated for use as a potential therapeutic target in the treatment of breast cancer. However, the in vivo antitumor effect of anti-OPN antibodies on breast cancer has not been reported. In this study, a mouse anti-human OPN antibody (1A12) was humanized by complementarity-determining region grafting method based on computer-assisted molecular modeling. A humanized version of 1A12, denoted as hu1A12, was shown to possess affinity comparable to that of its parental antibody. The ability of hu1A12 to inhibit cell migration, adhesion, invasion and colony formation was assessed in a highly metastatic human breast cancer cell line MDA-MB-435S. The results indicated that hu1A12 was effective in inhibiting the cell adhesion, migration, invasion and colony formation of MDA-MB-435S cells in vitro. hu1A12 also showed significant efficacy in suppressing primary tumor growth and spontaneous metastasis in a mouse lung metastasis model of human breast cancer. The specific epitope recognized by hu1A12 was identified to be 212NAPSD216, adjacent to the calcium binding domain of OPN. Our data strongly support that OPN is a potential target for the antibody-based therapies of breast cancer. The humanized anti-OPN antibody hu1A12 may be a promising therapeutic agent for the treatment of human breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7:1475–1482

    CAS  PubMed  Google Scholar 

  2. Wai PY, Kuo PC (2004) The role of osteopontin in tumor metastasis. J Surg Res 21:228–241

    Article  Google Scholar 

  3. Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mänsson H (2007) The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomarkers Prev 16:1087–1097

    Article  CAS  PubMed  Google Scholar 

  4. Senger DR, Perruzzi CA, Papadopoulos A (1989) Elevated expression of secreted phosphoprotein I (osteopontin, 2ar) as a consequence of neoplastic transformation. Anticancer Res 9:1291–1299

    CAS  PubMed  Google Scholar 

  5. Brown LF, Papadopoulos-Sergiou A, Berse B, Manseau EJ, Tognazzi K, Perruzzi CA, Dvorak HF, Senger DR (1994) Osteopontin expression and distribution in human carcinomas. Am J Pathol 145:610–623

    CAS  PubMed  Google Scholar 

  6. Denhardt DT (1996) Oncogene-initiated aberrant signaling engenders the metastatic phenotype: synergistic transcription factor interactions are targets for cancer therapy. Crit Rev Oncogenes 7:261–291

    CAS  Google Scholar 

  7. Chakraborty G, Jain S, Patil TV, Kundu GC (2008) Down-regulation of osteopontin attenuates breast tumor progression in vivo. J Cell Mol Med. doi:10.1111/j.1582-4934.2008.00263.x

  8. Behrend EI, Craig AM, Wilson SM, Denhardt DT, Chambers AF (1995) Expression of antisense osteopontin RNA in metastatic mouse fibroblasts is associated with reduced malignancy. Ann N Y Acad Sci 760:299–301

    Article  CAS  PubMed  Google Scholar 

  9. Behrend EI, Craig AM, Wilson SM, Denhardt DT, Chambers AF (1994) Reduced malignancy of ras-transformed NIH 3T3 cells expressing antisense osteopontin RNA. Cancer Res 54:832–837

    CAS  PubMed  Google Scholar 

  10. Adwan H, Bäuerle T, Najajreh Y, Elazer V, Golomb G, Berger MR (2004) Decreased levels of osteopontin and bone sialoprotein II are correlated with reduced proliferation, colony formation, and migration of GFP-MDA-MB-231 cells. Int J Oncol 24:1235–1244

    CAS  PubMed  Google Scholar 

  11. Wai PY, Mi Z, Guo H, Sarraf-Yazdi S, Gao C, Wei J, Marroquin CE, Clary B, Kuo PC (2005) Osteopontin silencing by small interfering RNA suppresses in vitro and in vivo CT26 murine colon adenocarcinoma metastasis. Carcinogenesis 26:741–751

    Article  CAS  PubMed  Google Scholar 

  12. Cui R, Takahashi F, Ohashi R, Gu T, Yoshioka M, Nishio K, Ohe Y, Tominaga S, Takagi Y, Sasaki S, Fukuchi Y, Takahashi K (2007) Abrogation of the interaction between osteopontin and alphavbeta3 integrin reduces tumor growth of human lung cancer cells in mice. Lung Cancer 57:302–310

    Article  PubMed  Google Scholar 

  13. Allan AL, George R, Vantyghem SA (2006) Role of the integrin-binding protein osteopontin in lymphatic metastasis of breast cancer. Am J Pathol 169:233–246

    Article  CAS  PubMed  Google Scholar 

  14. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  CAS  PubMed  Google Scholar 

  15. Cole BF, Gelber RD, Gelber S, Coates AS, Goldhirsch A (2001) Polychemotherapy for early breast cancer: an overview of the randomised clinical trials with quality-adjusted survival analysis. Lancet 358:277–286

    Article  CAS  PubMed  Google Scholar 

  16. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C, Wang Y, Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106

    CAS  PubMed  Google Scholar 

  17. Singhal H, Bautista DS, Tonkin KS, O’Malley FP, Tuck AB, Chambers AF, Harris JF (1997) Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res 3:605–611

    CAS  PubMed  Google Scholar 

  18. Tuck AB, O’Malley FP, Singhal H, Harris JF, Tonkin KS, Kerkvliet N, Saad Z, Doig GS, Chambers AF (1998) Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 79:502–508

    Article  CAS  PubMed  Google Scholar 

  19. Coppola D, Szabo M, Boulware D, Muraca P, Alsarraj M, Chambers AF, Yeatman TJ (2004) Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res 10:184–190

    Article  CAS  PubMed  Google Scholar 

  20. Rudland PS, Platt-Higgins A, El-Tanani M, De Silva Rudland S, Barraclough R, Winstanley JH, Howitt R, West CR (2002) Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res 62:3417–3427

    CAS  PubMed  Google Scholar 

  21. Tuck AB, Arsenault DM, O’Malley FP, Hota C, Ling MC, Wilson SM, Chambers AF (1999) Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene 18:4237–4246

    Article  CAS  PubMed  Google Scholar 

  22. Shevde LA, Samant RS, Paik JC, Metge BJ, Chambers AF, Casey G, Frost AR, Welch DR (2006) Osteopontin knockdown suppresses tumorigenicity of human metastatic breast carcinoma, MDA-MB-435. Clin Exp Metastasis 23:123–133

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki M, Mose E, Galloy C, Tarin D (2007) Osteopontin gene expression determines spontaneous metastatic performance of orthotopic human breast cancer xenografts. Am J Pathol 171:682–692

    Article  CAS  PubMed  Google Scholar 

  24. Bautista DS, Xuan JW, Hota C, Chambers AF, Harris JF (1994) Inhibition of Arg-Gly-Asp (RGD)-mediated cell adhesion to osteopontin by a monoclonal antibody against osteopontin. J Biol Chem 269:23280–23285

    CAS  PubMed  Google Scholar 

  25. Li B, Wang H, Dai J, Ji J, Qian W, Zhang D, Hou S, Guo Y (2005) Construction and characterization of a humanized anti-human CD3 monoclonal antibody 12F6 with effective immunoregulation functions. Immunology 116:487–498

    CAS  PubMed  Google Scholar 

  26. Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP, Waldmann TA (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA 86:10029–10033

    Article  CAS  PubMed  Google Scholar 

  27. Pulito VL, Roberts VA, Adair JR, Rothermel AL, Collins AM, Varga SS, Martocello C, Bodmer M, Jolliffe LK, Zivin RA (1996) Humanization and molecular modeling of the anti-CD4 monoclonal antibody, OKT4A. J Immunol 156:2840–2850

    CAS  PubMed  Google Scholar 

  28. Kettleborough CA, Saldanha J, Heath VJ, Morrison CJ, Bendig MM (1991) Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng 4:773–783

    Article  CAS  PubMed  Google Scholar 

  29. Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, Simon R, Li Y, Robles AI, Chen Y, Ma ZC, Wu ZQ, Ye SL, Liu YK, Tang ZY, Wang XW (2003) Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9:416–423

    Article  CAS  PubMed  Google Scholar 

  30. Fan K, Dai J, Wang H, Wei H, Cao Z, Hou S, Qian W, Wang H, Li B, Zhao J, Xu H, Yang C, Guo Y (2008) Treatment of collagen-induced arthritis with an anti-osteopontin monoclonal antibody through promotion of apoptosis of both murine and human activated T cells. Arthritis Rheum 58:2041–2052

    Article  CAS  PubMed  Google Scholar 

  31. Kabat EA, Wu TT, Reid-Miller M, Perry HM, Gottesman KS (1987) Sequences of proteins of immunological interest, 4th edn. United States Department of Health and Human Services, Washington, DC

    Google Scholar 

  32. Schroff RW, Foon KA, Beatty SM, Oldham RK, Morgan AC Jr (1985) Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res 45:879–885

    CAS  PubMed  Google Scholar 

  33. Owens RJ, Young RJ (1994) The genetic engineering of monoclonal antibodies. J Immunol Methods 168:149–165

    Article  CAS  PubMed  Google Scholar 

  34. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 81:6851–6855

    Article  CAS  PubMed  Google Scholar 

  35. Boulianne GL, Hozumi N, Shulman MJ (1984) Production of functional chimaeric mouse/human antibody. Nature 312:643–646

    Article  CAS  PubMed  Google Scholar 

  36. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    Article  CAS  PubMed  Google Scholar 

  37. Winter G, Harris WJ (1993) Humanized antibodies. Immunol Today 14:243–246

    Article  CAS  PubMed  Google Scholar 

  38. Kipriyanov SM, Le Gall F (2004) Generation and production of engineered antibodies. Mol Biotechnol 26:39–60

    Article  CAS  PubMed  Google Scholar 

  39. Presta LG, Lahr SJ, Shields RL (1993) Humanization of an antibody directed against IgE. J Immunol 151:2623–2632

    CAS  PubMed  Google Scholar 

  40. Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF (2001) The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 1:621–632

    Article  CAS  PubMed  Google Scholar 

  41. Xuan JW, Hota C, Chambers AF (1994) Recombinant GST-human osteopontin fusion protein is functional in RGD-dependent cell adhesion. J Cell Biochem 54:247–255

    Article  CAS  PubMed  Google Scholar 

  42. Senger DR, Perruzzi CA (1996) Cell migration promoted by a potent GRGDS-containing thrombin-cleavage fragment of osteopontin. Biochim Biophys Acta 1314:13–24

    Article  CAS  PubMed  Google Scholar 

  43. Tuck AB, Chambers AF (2001) The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia 6:419–429

    Article  CAS  PubMed  Google Scholar 

  44. Philip S, Kundu GC (2003) Osteopontin induces nuclear factor κB-mediated promatrix metalloproteinase-2 activation through IκBα/IKK signaling pathways, and curcumin (diferulolylmethane) down-regulates these pathways. J Biol Chem 278:14487–14497

    Article  CAS  PubMed  Google Scholar 

  45. Das R, Mahabeleshwar GH, Kundu GC (2003) Osteopontin stimulates cell motility and nuclear factor B-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Chem 278:28593–28606

    Article  CAS  PubMed  Google Scholar 

  46. Xu H, Jin XQ, Jing L, Li GS (2006) Effect of sodium fluoride on the expression of Bcl-2 family and osteopontin in rat renal tubular cells. Biol Trace Elem Res 109:55–60

    Article  CAS  PubMed  Google Scholar 

  47. Hashimoto M, Sun D, Rittling SR, Denhardt DT, Young W (2007) Osteopontin-deficient mice exhibit less inflammation, greater tissue damage, and impaired locomotor recovery from spinal cord injury compared with wild-type controls. J Neurosci 27:3603–3611

    Article  CAS  PubMed  Google Scholar 

  48. Rangaswami H, Bulbule A, Kundu GC (2006) Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16:79–87

    Article  CAS  PubMed  Google Scholar 

  49. Hijiya N, Setoguchi M, Matsuura K, Higuchi Y, Akizuki S, Yamamoto S (1994) Cloning and characterization of the human osteopontin gene and its promoter. Biochem J 303:255–262

    CAS  PubMed  Google Scholar 

  50. O’Regan A, Berman JS (2000) Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation. Int J Exp Pathol 81:373–390

    Article  PubMed  Google Scholar 

  51. Yamamoto N, Nakashima T, Torikai M, Naruse T, Morimoto J, Kon S, Sakai F, Uede T (2007) Successful treatment of collagen-induced arthritis in non-human primates by chimeric anti-osteopontin antibody. Int Immunopharmacol 7:1460–1470

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Yang Yang and Ms. Jing Xu for their technical assistance as well as antibody production facility of National Engineering Research Center for Antibody Medicine for providing the purified control antibodies. This work was supported by National Natural Science Foundation of China, Ministry of Science & Technology of China (973 & 863 program projects), National Key Project for Infectious Disease, National Key New Drug Creation and Manufacturing Program and Shanghai Commission of Science & Technology. This study is also supported by Shanghai Leading Academic Discipline Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Guo.

Additional information

J. Dai, B. Li and J. Shi contributed equally to this work as first authors.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00262-009-0812-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, J., Li, B., Shi, J. et al. A humanized anti-osteopontin antibody inhibits breast cancer growth and metastasis in vivo. Cancer Immunol Immunother 59, 355–366 (2010). https://doi.org/10.1007/s00262-009-0754-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0754-z

Keywords

Navigation