Skip to main content
Log in

Tunable recombinant protein expression with E. coli in a mixed-feed environment

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Controlling the recombinant protein production rate in Escherichia coli is of utmost importance to ensure product quality and quantity. Up to now, only the genetic construct, introduced into E. coli, and the specific growth rate of the culture were used to influence and stir the productivity. However, bioprocess technological means to control or even tune the productivity of E. coli are scarce. Here, we present a novel method for the process-technological control over the recombinant protein expression rate in E. coli. A mixed-feed fed-batch bioprocess based on the araBAD promoter expression system using both d-glucose and l-arabinose as assimilable C-sources was designed. Using the model product green fluorescent protein, we show that the specific product formation rate can be efficiently tuned even on the cellular level only via the uptake rate of l-arabinose. This novel approach introduces an additional degree of freedom for the design of recombinant bioprocesses with E. coli. We anticipate that the presented method will result in significant quality and robustness improvement as well as cost and process time reduction for recombinant bacterial bioprocesses in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnau C, Casas C, Valero F (2011) The effect of glycerol mixed substrate on the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system. Biochem Eng J 57:30–37. doi:10.1016/j.bej.2011.08.004

    Article  CAS  Google Scholar 

  • Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408. doi:10.1038/nbt1029

    Article  PubMed  CAS  Google Scholar 

  • Ben-Samoun K, Leblon G, Reyes O (1999) Positively regulated expression of the Escherichia coli araBAD promoter in Corynebacterium glutamicum. FEMS Microbiol Lett 174(1):125–130

    Article  PubMed  CAS  Google Scholar 

  • Carrier TA, Keasling JD (1999) Investigating autocatalytic gene expression systems through mechanistic modeling. J Theor Biol 201(1):25–36. doi:10.1006/jtbi.1999.1010

    Article  PubMed  CAS  Google Scholar 

  • Crameri A, Whitehorn EA, Tate E, Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14(3):315–319. doi:10.1038/nbt0396-315

    Article  PubMed  CAS  Google Scholar 

  • DeLisa MP, Li J, Rao G, Weigand WA, Bentley WE (1999) Monitoring GFP-operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor. Biotechnol Bioeng 65(1):54–64

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13(2):247–261

    Article  PubMed  CAS  Google Scholar 

  • Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177(14):4121–4130

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hellwig S, Emde F, Raven NP, Henke M, van Der Logt P, Fischer R (2001) Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnol Bioeng 74(4):344–352

    Article  PubMed  CAS  Google Scholar 

  • Hoffman BJ, Broadwater JA, Johnson P, Harper J, Fox BG, Kenealy WR (1995) Lactose fed-batch overexpression of recombinant metalloproteins in Escherichia coli BL21 (DE3): process control yielding high levels of metal-incorporated, soluble protein. Protein Expr Purif 6(5):646–654. doi:10.1006/prep.1995.1085

    Article  PubMed  CAS  Google Scholar 

  • Jungo C, Marison I, von Stockar U (2007a) Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: a quantitative study based on concentration gradients in transient continuous cultures. J Biotechnol 128(4):824–837. doi:10.1016/j.jbiotec.2006.12.024

    Article  PubMed  CAS  Google Scholar 

  • Jungo C, Schenk J, Pasquier M, Marison IW, von Stockar U (2007b) A quantitative analysis of the benefits of mixed feeds of sorbitol and methanol for the production of recombinant avidin with Pichia pastoris. J Biotechnol 131(1):57–66. doi:10.1016/j.jbiotec.2007.05.019

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD (1999) Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol 17(11):452–460

    Article  PubMed  CAS  Google Scholar 

  • Khlebnikov A, Risa O, Skaug T, Carrier TA, Keasling JD (2000) Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. J Bacteriol 182(24):7029–7034. doi:10.1128/Jb.182.24.7029-7034.2000

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khlebnikov A, Datsenko KA, Skaug T, Wanner BL, Keasling JD (2001) Homogeneous expression of the P-BAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiol-Sgm 147:3241–3247

    CAS  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14(3):98–105. doi:10.1016/0167-7799(96)80930-9

    Article  PubMed  CAS  Google Scholar 

  • Lendenmann U, Snozzi M, Egli T (1996) Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture. Appl Environ Microbiol 62(5):1493–1499

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lim HK, Jung KH, Park DH, Chung SI (2000) Production characteristics of interferon-alpha using an l-arabinose promoter system in a high-cell-density culture. Appl Microbiol Biotechnol 53(2):201–208

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Bentley WE, Rao G (2004) A high-throughput approach to promoter study using green fluorescent protein. Biotechnol Prog 20(6):1634–1640. doi:10.1021/bp049751l

    Article  PubMed  CAS  Google Scholar 

  • Neubauer P, Lin HY, Mathiszik B (2003) Metabolic load of recombinant protein production: inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli. Biotechnol Bioeng 83(1):53–64. doi:10.1002/bit.10645

    Article  PubMed  CAS  Google Scholar 

  • Newman JR, Fuqua C (1999) Broad-host-range expression vectors that carry the l-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227(2):197–203

    Article  PubMed  CAS  Google Scholar 

  • Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A 43(7):553–566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sagmeister P, Kment M, Wechselberger P, Meitz A, Langemann T, Herwig C (2013) Soft-sensor assisted dynamic investigation of mixed feed bioprocesses. Process Biochem 48(12):1839–1847. doi:10.1016/j.procbio.2013.09.018

    Article  CAS  Google Scholar 

  • Siegele DA, Hu JC (1997) Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci U S A 94(15):8168–8172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C (1997) Structural basis for ligand-regulated oligomerization of AraC. Science 276(5311):421–425

    Article  PubMed  CAS  Google Scholar 

  • Sommer B, Friehs K, Flaschel E (2010) Efficient production of extracellular proteins with Escherichia coli by means of optimized coexpression of bacteriocin release proteins. J Biotechnol 145(4):350–358. doi:10.1016/j.jbiotec.2009.11.019

    Article  PubMed  CAS  Google Scholar 

  • Spadiut O, Posch G, Ludwig R, Haltrich D, Peterbauer CK (2010) Evaluation of different expression systems for the heterologous expression of pyranose 2-oxidase from Trametes multicolor in E. coli. Microb Cell Fact 9:14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Striedner G, Cserjan-Puschmann M, Potschacher F, Bayer K (2003) Tuning the transcription rate of recombinant protein in strong Escherichia coli expression systems through repressor titration. Biotechnol Prog 19(5):1427–1432. doi:10.1021/bp034050u

    Article  PubMed  CAS  Google Scholar 

  • Sukchawalit R, Vattanaviboon P, Sallabhan R, Mongkolsuk S (1999) Construction and characterization of regulated l-arabinose-inducible broad host range expression vectors in Xanthomonas. FEMS Microbiol Lett 181(2):217–223

    PubMed  CAS  Google Scholar 

  • Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12(2):195–201

    Article  PubMed  CAS  Google Scholar 

  • Tegel H, Ottosson J, Hober S (2011) Enhancing the protein production levels in Escherichia coli with a strong promoter. FEBS J 278(5):729–739. doi:10.1111/j.1742-4658.2010.07991.x

    Article  PubMed  CAS  Google Scholar 

  • Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211–222

    Article  PubMed  CAS  Google Scholar 

  • Wechselberger P, Sagmeister P, Engelking H, Schmidt T, Wenger J, Herwig C (2012) Efficient feeding profile optimization for recombinant protein production using physiological information. Bioprocess Biosyst Eng 35(9):1637–1649. doi:10.1007/s00449-012-0754-9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wechselberger P, Sagmeister P, Herwig C (2013) Model-based analysis on the extractability of information from data in dynamic fed-batch experiments. Biotechnol Prog 29(1):285–296. doi:10.1002/btpr.1649

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zalai D, Dietzsch C, Herwig C, Spadiut O (2012) A dynamic fed batch strategy for a Pichia pastoris mixed feed system to increase process understanding. Biotechnol Prog 28(3):878–886. doi:10.1002/btpr.1551

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Prof. Ingrid Steiner and Timo Langemann for their assistance with the fluorescence analytics (flourimeter and flow cytometer). Furthermore, the authors acknowledge BIRD-C GmbH & CoKEG (Kritzendorf, Austria) for the provision of the E. coli C41 strain.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Spadiut.

Additional information

Patrick Sagmeister and Clemens Schimek contributed equally to this work.

Total soluble intracellular protein separated by 12% SDS PAGE and stained with Coomassie Brilliant Blue. Lane 1 to 6 shows the time related expression of EGFP in one center point experiment from the time point of induction (lane 1) to the end of the process (lane 6). The lower box indicates the accumulation of EGFP at the anticipated molecular weight of 33 kDa. The upper box indicates the accumulation of a second protein which is supposed to be Ribulokinase, a 61 kDa protein involved in the L-arabinose catabolism. Lane 7: Molecular weight standard (SeeBlue® Plus2 Pre-stained Protein Standard).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagmeister, P., Schimek, C., Meitz, A. et al. Tunable recombinant protein expression with E. coli in a mixed-feed environment. Appl Microbiol Biotechnol 98, 2937–2945 (2014). https://doi.org/10.1007/s00253-013-5445-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5445-1

Keywords

Navigation