Skip to main content
Log in

Alternative splicing in ascomycetes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Alternative splicing is a complex and regulated process, which results in mRNA with different coding capacities from a single gene. Extend and types of alternative splicing vary greatly among eukaryotes. In this review, I focus on alternative splicing in ascomycetes, which in general have significant lower extend of alternative splicing than mammals. Yeast-like species have low numbers of introns and consequently alternative splicing is lower compared to filamentous fungi. Several examples from single studies as well as from genomic scale analysis are presented, including a survey of alternative splicing in Neurospora crassa. Another focus is regulation by riboswitch RNA and alternative splicing in a heterologous system, along with putative protein factors involved in regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ast G (2004) How did alternative splicing evolve? Nat Rev Genet 5:773–782

    Article  CAS  Google Scholar 

  • Baba Y, Shimonaka A, Koga J, Kubota H, Kono T (2005) Alternative splicing produces two endoglucanases with one or two carbohydrate-binding modules in Mucor circinelloides. J Bacteriol 187:3045–3051

    Article  CAS  Google Scholar 

  • Barass JD, Beggs JD (2003) Splicing goes global. Trend Genet 19:295–298

    Article  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Ann Rev Biochem 72:291–336

    Article  CAS  Google Scholar 

  • Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:37–47

    Article  CAS  Google Scholar 

  • Blencowe BJ, Khanna M (2007) RNA in control. Nature 447:391–393

    Article  CAS  Google Scholar 

  • Boldo JT, Do Amaral KB, Junges A, Pinto PM, Staats CC, Vainstein MH, Schrank A (2010) Evidence of alternative splicing of the chi2 chitinase gene from Metarhizium anisopliae. Gene 462:1–7

    Article  CAS  Google Scholar 

  • Brunner M, Diernfellner A (2006) How temperature affects the circadian clock of Neurospora crassa. Chronobiol Internat 23:81–90

    Article  Google Scholar 

  • Calarco JA, Zhen M, Blencowe BJ (2011) Networking in a global world: establishing functional connections between neural splicing regulators and their target transcripts. RNA 17:775–791

    Article  CAS  Google Scholar 

  • Chang K-Y, Muddiman DC (2011) Identification of alternative splice variants in Aspergillus flavus through comparison of multiple tandem MS search algorithms. BMC Genomics 12:358

    Article  CAS  Google Scholar 

  • Chang K-Y, Georgianna DR, Heber S, Payne GA, Muddiman DC (2010) Detection of alternative splice variants at the proteome level in Aspergillus flavus. J Proteome Res 9:1209–1217

    Article  CAS  Google Scholar 

  • Cheah MT, Wachter A, Sudarsan N, Breaker RR (2007) Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500

    Article  CAS  Google Scholar 

  • Davis CA, Grate L, Spingola M, Ares M (2000) Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Nucl Acids Res 28:1700–1706

    Article  CAS  Google Scholar 

  • Derr LK, Strathern JN (1993) A role for reverse transcripts in gene conversion. Nature 361:170–173

    Article  CAS  Google Scholar 

  • Dong S, Li C, Zenklusen D, Singer RH, Jacobson A, He F (2007) YRA1 autoregulation requires nuclear export and cytoplasmic Edc3p-mediated degradation of its pre-mRNA. Mol Cell 25:559–573

    Article  CAS  Google Scholar 

  • Eichinger L, Pachebat JA, Glöckner G, Rajandream M-A, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny MT, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Madan Babu M, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail MA, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox EC, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  CAS  Google Scholar 

  • Engebrecht J, Voelkel-Meiman K, Roeder GS (1991) Meiosis-specific RNA splicing in yeast. Cell 66:1257–1268

    Article  CAS  Google Scholar 

  • Fink GR (1987) Pseudogenes in yeast? Cell 49:5–6

    Article  CAS  Google Scholar 

  • Freitag J, Ast J, Bölker M (2012) Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485:522–525

    Article  CAS  Google Scholar 

  • Galagan JE, Henn MR, Ma L-J, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631

    Article  CAS  Google Scholar 

  • Habara Y, Urushiyama S, Tani T, Ohshima Y (1998) The fission yeast prp10(+) gene involved in pre-mRNA splicing encodes a homologue of highly conserved splicing factor, SAP155. Nucl Acids Res 26:5662–5669

    Article  CAS  Google Scholar 

  • Henscheid KL, Voelker RB, Berglund JA (2008) Alternative modes of binding by U2AF65 at the polypyrimidine tract. Biochem 47:449–459

    Article  CAS  Google Scholar 

  • Hoppins SC, Go NE, Klein A, Schmitt S, Neupert W, Rapaport D, Nargang FE (2007) Alternative splicing gives rise to different isoforms of the Neurospora crassa Tob55 protein that vary in their ability to insert beta-barrel proteins into the outer mitochondrial membrane. Genetics 177:137–149

    Article  CAS  Google Scholar 

  • Hoskins AA, Moore MJ (2012) The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 37:179–188

    Article  CAS  Google Scholar 

  • Juneau K, Nislow C, Davies RW (2009) Alternative splicing of PTC7 in Saccharomyces cerevisiae determines protein localization. Genetics 183:185–194

    Article  CAS  Google Scholar 

  • Kabran P, Rossignol T, Gaillardin C, Nicaud J-M, Neuvéglise C (2012) Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica. DNA Res 19:231–244

    Article  CAS  Google Scholar 

  • Kempken F, Kück U (1996) Restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: structure, expression, and alternative RNA splicing. Mol Cell Biol 16:6563–6572

    CAS  Google Scholar 

  • Kempken F, Windhofer F (2004) Alternative splicing of transcripts of transposon Restless is maintained in the foreign host Neurospora crassa and can be modified by introducing mutations at the splice sites. Curr Genet 46:59–65

    Article  CAS  Google Scholar 

  • Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nature Rev Mol Cell Biol 14:153–165

    Article  CAS  Google Scholar 

  • Kubodera T, Yamashita N, Nishimura A (2002) Transformation of Aspergillus sp. and Trichoderma reesei using the pyrithiamine resistance gene (ptrA) of Aspergillus oryzae. Biosci Biotechnol Biochem 66:404–406

    Article  CAS  Google Scholar 

  • Kuldau GA, Raju NB, Glass NL (1998) Repeat-induced point mutations in Pad-1, a putative RNA splicing factor from Neurospora crassa, confer dominant lethal effects on ascus development. Fungal Genet Biol 23:169–180

    Article  CAS  Google Scholar 

  • Leal J, Squina FM, Freitas JS, Silva EM, Ono CJ, Martinez-Rossi NM, Rossi A (2009) A splice variant of the Neurospora crassa hex-1 transcript, which encodes the major protein of the Woronin body, is modulated by extracellular phosphate and pH changes. FEBS Lett 583:180–184

    Article  CAS  Google Scholar 

  • Lev-Maor G, Sorek R, Shomron N, Ast G (2003) The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 300:1288–1291

    Article  CAS  Google Scholar 

  • Li S, Breaker RR (2013) Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing. Nucl Acids Res. doi:10.1093/nar/gkt057

    Google Scholar 

  • Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22:1184–1195

    Article  CAS  Google Scholar 

  • Mekouar M, Blanc-Lenfle I, Ozanne C, Da Silva C, Cruaud C, Wincker P, Gaillardin C, Neuvéglise C (2010) Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol 11:R65

    Article  Google Scholar 

  • Meyer M, Plass M, Pérez-Valle J, Eyras E, Vilardell J (2011) Deciphering 3′ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing. Mol Cell 43:1033–1039

    Article  CAS  Google Scholar 

  • Mitrovich QM, Tuch BB, Guthrie C, Johnson AD (2007) Computational and experimental approaches double the number of known introns in the pathogenic yeast Candida albicans. Genome Res 17:492–502

    Article  CAS  Google Scholar 

  • Miura F, Kawaguchi N, Sese J, Toyoda A, Hattori M, Morishita S, Ito T (2006) A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc Natl Acad Sci 103:17846–17851

    Article  CAS  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  CAS  Google Scholar 

  • Nakawaga T, Ogawa H (1999) The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO J 18:5714–5733

    Article  Google Scholar 

  • Neuvéglise C, Marck C, Gaillardin C (2011) The intronome of budding yeasts. Comptes Rendus Biologies 334:662–670

    Article  Google Scholar 

  • Park G, Servin JA, Turner GE, Altamirano L, Colot HV, Collopy P, Litvinkova L, Li L, Jones CA, Diala F-G, Dunlap JC, Borkovich KA (2011) Global analysis of serine-threonine protein kinase genes in Neurospora crassa. Euk Cell 10:1553–1564

    Article  CAS  Google Scholar 

  • Patel AA, Steitz JA (2003) Splicing double: insights from the second spliceosome. Nature Rev Mol Cell Biol 4:960–970

    Article  CAS  Google Scholar 

  • Plass M, Codony-Servat C, Ferreira PG, Vilardell J, Eyras E (2012) RNA secondary structure mediates alternative 3′ss selection in Saccharomyces cerevisiae. RNA 18:1103–1115

    Article  CAS  Google Scholar 

  • Preker PJ, Guthrie C (2012) Autoregulation of the mRNA export factor Yra1p requires inefficient splicing of its pre-mRNA. RNA 12:994–1006

    Article  Google Scholar 

  • Ramani AK, Calarco JA, Pan Q, Mavandadi S, Wang Y, Nelson AC, Lee LJ, Morris Q, Blencowe BJ, Zhen M, Fraser AG (2011) Genome-wide analysis of alternative splicing in Caenorhabditis elegans. Genome Res 21:342–348

    Article  CAS  Google Scholar 

  • Rep M, Duyvesteijn RGE, Gale L, Usgaard T, Cornelissen BJC, Ma L-J, Ward TJ (2006) The presence of GC-AG introns in Neurospora crassa and other euascomycetes determined from analyses of complete genomes: implications for automated gene prediction. Genomics 87:338–347

    Article  CAS  Google Scholar 

  • Sugnet CW, Kent WJ, Ares M, Haussler D (2004) Transcriptome and genome conservation of alternative splicing events in humans and mice. Pacific Symp Biocomp 66–77

  • Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, Bowman BJ (2000) Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet Biol 31:205–217

    Article  CAS  Google Scholar 

  • Tey WK, North AJ, Reyes JL, Lu Y, Jedd G (2005) Polarized gene expression determines Woronin body formation at the leading edge of the fungal colony. Mol Biol Cell 16:2651–2659

    Article  CAS  Google Scholar 

  • Trevisan GL, Oliveira EHD, Peres NTA, Cruz AHS, Martinez-Rossi NM, Rossi A (2011) Transcription of Aspergillus nidulans pacC is modulated by alternative RNA splicing of palB. FEBS Lett 585:3442–3445

    Article  CAS  Google Scholar 

  • Vilardell J, Chartrand P, Singer RH, Warner JR (2000) The odyssey of a regulated transcript. RNA 6:1773–1780

    Article  CAS  Google Scholar 

  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  Google Scholar 

  • Will CL, Lührmann R (2005) Splicing of a rare class of introns by the U12-dependent spliceosome. Biol Chem 386:713–724

    Article  CAS  Google Scholar 

  • Windhofer F, Catcheside DEA, Kempken F (2000) Methylation of the foreign transposon Restless in vegetative mycelia of Neurospora crassa. Curr Genet 37:194–199

    Article  CAS  Google Scholar 

  • Yu B, Fey P, Kestin-Pilcher KE, Fedorov A, Prakash A, Chisholm RL, Wu JY (2011) Spliceosomal genes in the D. discoideum genome: a comparison with those in H. sapiens, D. melanogaster, A. thaliana and S. cerevisiae. Protein Cell 2:395–409

    Article  CAS  Google Scholar 

  • Zhang M-Y, Miyake T (2009) Development and media regulate alternative splicing of a methyltransferase pre-mRNA in Monascus pilosus. J Agricult Food Chem 57:4162–4167

    Article  CAS  Google Scholar 

  • Zhao C, Waalwijk C, de Wit PJGM, Tang D, van der Lee T (2013) RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genomics 14:21

    Article  Google Scholar 

Download references

Acknowledgments

I thank Katharina Knittler (Kiel) for helping with identifying relevant literature, Stefanie Pöggeler (Göttingen) for critical discussion, and Sharvari Gujja (Broad) for providing a list of alternative spliced N. crassa transcripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kempken.

Electronic supplementary material

ESM 1

(PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempken, F. Alternative splicing in ascomycetes. Appl Microbiol Biotechnol 97, 4235–4241 (2013). https://doi.org/10.1007/s00253-013-4841-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4841-x

Keywords

Navigation