Skip to main content

Advertisement

Log in

Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

More than 80,000 tons of itaconic acid (IA) is produced worldwide each year and is sold at a price of around US$ 2/kg. The IA production yield from sugar is higher than 80 g/l. The widespread use of IA in synthetic resins, synthetic fibers, plastics, rubbers, surfactants, and oil additives has resulted in an increased demand for this product. However, at present, the IA production capacity exceeds the demand because this product has a restricted range of applications. Studies have been actively conducted in different biomedical fields—dental, ophthalmic, and drug delivery—to extend the range of applications of IA. Recently, many researchers have attempted to replace the carbon source used for microbial production of IA with cheaper alternative substrates. However, there is still a need for new biotechnology innovations that would help to reduce the production costs, such as innovative process development and strain improvement to allow the use of a low-quality carbon source. In this short review, we discuss the following aspects of IA production: strain improvement, process development, identification of the key enzyme cis-aconitic acid decarboxylase (CAD) in the IA metabolic pathway, metabolic importance of CAD, and new applications of IA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham M, Sawant SB (1990) Hydrodynamics and mass transfer characteristics of packed bubble columns. Chem Eng J 43:95–105

    Article  CAS  Google Scholar 

  • Batti M, Schweiger LB (1963) Process for the production of itaconic acid. US Patent 3,078,217 (to Miles Laboratories)

  • Bentley R, Thiessen CP (1957a) Biosynthesis of itaconic acid in Aspergillus terreus. I. Tracer studies with 14C-labeled substrates. J Biol Chem 226:673–687

    CAS  PubMed  Google Scholar 

  • Bentley R, Thiessen CP (1957b) Biosynthesis of itaconic acid in Aspergillus terreus. II. Early stages in glucose dissimilation and the role citrate. J Biol Chem 226:689–701

    CAS  PubMed  Google Scholar 

  • Bentley R, Thiessen CP (1957c) Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J Biol Chem 226:703–720

    CAS  PubMed  Google Scholar 

  • Blanco MD, Bernardo MV, Teijón C, Sastre RL, Teijón JM (2003) Transdermal application of bupivacaine-loaded poly(acrylamide(A)-co-monomethyl itaconate) hydrogels. Int J Pharm 255:99–107

    Article  CAS  PubMed  Google Scholar 

  • Bonnarme P, Gillet B, Sepulchre AM, Role C, Beloeil JC, Ducrocq C (1995) Itaconate biosynthesis in Aspergillus terreus. J Bacteriol 177:3573–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bresser E, Braun S (2000) Conversion of citric acid to itaconic acid in a novel liquid membrane bioreactor. J Chem Technol Biotechnol 75:66–72

    Article  Google Scholar 

  • Christiansen A (1980) Surface active amide and amideazolines. GB Patent 1,574,916 (to Miranol Chemical)

  • Crisp S, Wilson AD (1980) Cements. US Patent 4,222,920 (to Mat’l Res Dev Co. England)

  • Culbertson BM (2006) New polymeric materials for use in glass-ionomer cements. J Dent 34:556–565

    Article  CAS  PubMed  Google Scholar 

  • De TK, Bergey EJ, Chung SJ, Rodman DJ, Bharali DJ, Prasad PN (2004) Polycarboxylic acid nanoparticles for ophthalmic drug delivery: an ex vivo evaluation with human cornea. J Microencapsul 21:841–855

    Article  CAS  PubMed  Google Scholar 

  • Dwiarti L (2006) Study of biorefinery of sago starch for itaconic acid production. PhD thesis, United Graduate School of Agricultural Science, Gifu University (Shizuoka University)

  • Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M (2002) Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J Biosci Bioeng 94:29–33

    Article  CAS  PubMed  Google Scholar 

  • Dwiarti L, Otsuka M, Miura S, Yaguchi M, Okabe M (2007) Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour Technol 98(17):3329–37

    Article  CAS  PubMed  Google Scholar 

  • Eimhjellen KE, Larsen H (1955) The mechanism of itaconic acid formation by Aspergillus terreus. 2. The effect of substrates and inhibitors. Biochem 60:139–147

    CAS  Google Scholar 

  • Ellis EJ, Olson AP, Bonafini JR (1994) Improved itaconic acid copolymeric compositions for contact lenses. WO Patent 9,423,314 (to Polymer Technology Corp., MA)

  • Ferraboschi P, Casati S, Grisenti P, Santaniello E (1994) Selective enzymatic transformations of itaconic acid derivates: An access to potentially useful building blocks. Tetrahedron 50:3251–3258

    Article  CAS  Google Scholar 

  • Goda H, Nagase T, Tanoue S, Sugiyama J, Steidl S, Tuncher A, Kobayashi T, Tsukagoshi N, Brakhage AA, Kato M (2005) Nuclear translocation of the heterotrimeric CCAAT binding factor of Aspergillus oryzae is dependent on two redundant localising signals in a single subunit. Arch Microbiol 184:93–100

    Article  CAS  PubMed  Google Scholar 

  • Gong B, Wang Y (2002) ICP-AES determination of traces of noble metal ions pre-concentrated and separated on a new polyacrylacrylaminothiourea chelating fiber. Anal Bioanal Chem 372:597–600

    Article  CAS  PubMed  Google Scholar 

  • Gordon AA, Coupland K (1980) Mehrzweckschmiermittel. DE Patent 3,001,000 (to Exxon Research and Engineering)

  • Hashimoto K, Shray Y, Tanigaki M (1989) Culture method for microorganism and plant cell. JP Patent 01,296,977 (to Kao Co., Japan)

  • Helle U, Onken U (1988) Continuous microbial leaching of a pyritic concentrate by Leptospirillum-like bacteria. Appl Microbiol Biotechnol 28:553–558

    Article  CAS  Google Scholar 

  • Horitsu H, Takahashi Y, Tsuda J, Kawai K, Kawano Y (1983) Production of itaconic acid by Aspergillus terreus immobilized in polyacrylamide gels. Eur J Appl Microbiol Biotechnol 18:358–360

    Article  CAS  Google Scholar 

  • Horton P, Park K, Obayashi T, Nakai K (2006) Protein Subcellular Localization Prediction with WoLF PSORT. Proceedings of the 4th Annual Asia Pacific Bioinformatics Conference APBC06, Taipei, Taiwan. pp. 39–48

  • Kanamasa S, Dwiarti L, Okabe M, Park EY (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80:223–229

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Aoyama A, Naruse F, Tateyama Y, Hayashi K, Miyazaki M, Papagiannopoulos P, Davis MA, Hynes MJ, Kobayashi T, Tsukagoshi N (1998) The Aspergillus nidulans CCAAT-binding factor AnCP/AnCF is a heteromeric protein analogous to the HAP complex of Saccharomyces cerevisiae. Mol Gen Genet 257:404–411

    Article  CAS  PubMed  Google Scholar 

  • Kautola H, Vahvaselka M, Linko YY, Linko P (1985) Itaconic acid production by immobilized Aspergillus terreus from xylose and glucose. Biotechnol Lett 7:167–172

    Article  CAS  Google Scholar 

  • Kautola H, Vassilev N, Linko YY (1990) Continuous itaconic acid production by immobilized biocatalysts. J Biotechnol 13:315–323

    Article  CAS  PubMed  Google Scholar 

  • Kautola H, Rymowicz W, Linko YY, Linko P (1991) Itaconic acid production by immobilized Aspergillus terreus with varied metal additions. Appl Microbiol Biotechnol 35:154–158

    CAS  Google Scholar 

  • Kawamura D, Furuhashi M, Saito O, Matsui H (1981) Production of itaconic acid by fermentation. JP Patent 56,137,893 (to Iwata)

  • Kiese S, Ebner HG, Onken U (1980) A simple laboratory air-lift fermentor. Biotechnol Lett 2:345–350

    Article  Google Scholar 

  • Kin R, Sai T, So S (1998) Itaconate copolymer with quadratic nonlinear optical characteristic. JP Patent 10,293,331

  • Kinoshita K (1932) Über die Produktion von Itaconsäure und Mannit durch einen neuen Schimmelpilz Aspergillus itaconicus. Acta Phytochim 5:271–287

    Google Scholar 

  • Kobayashi T (1967) Itaconic acid fermentation. Process Biochem 2:61–65

    CAS  Google Scholar 

  • Kobayashi T, Nakamura I (1964) Dynamics in mycelia concentration of A. terreus K26 in steady state of continuous culture. J Ferment Technol 44:264–274

    Google Scholar 

  • König B, Schügerl K, Seewald C (1982) Strategies for penicillin fermentation in tower-loop reactors. Biotechnol Bioeng 24:259–280

    Article  PubMed  Google Scholar 

  • Kurian JV (2005) A new polymer platform for the future—Sorona from corn derived 1, 3-propanediol. J Pol Env 13:159–167

    Article  CAS  Google Scholar 

  • Lancashire E (1969) Soap compositions having improved curd-dispersing properties. US Patent 3,454,500 (to Procter and Gamble)

  • Lockwood LB, Reeves MD (1945) Some factors affecting the production of itaconic acid by Aspergillus terreus. Arch Biochem 6:455–469

    CAS  Google Scholar 

  • Matsushima H, Maeda K, Fukaya H, Kasahara K, Mase Y (1972) Scale-up of fermentors (I). Power requirement. J. Ferment Technol 50:100–104

    Google Scholar 

  • Moshaverinia A, Roohpour N, Darr JA, Rehman IU (2009) Synthesis and characterization of a novel N-vinylcarrolactam-containing acrylic acid terpolymer for application in glass-ionomer dental cements. Acta Biomater 5:2101–2108

    Article  CAS  PubMed  Google Scholar 

  • Moser A (1991) Tubular bioreactor: case study of bioreactor performance for industrial production and scientific research. Biotechnol Bioeng 37:1054–1065

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja UP, Kishore G (2005) Glass ionomer cement—the difference generation. Trends Biomater Artif Organs 18:158–165

    Google Scholar 

  • Naihu J, Wang SS (1986) Continuous itaconic acid production by Aspergillus terreus immobilized in a porous disk bioreactor. Appl Microbiol Biotechnol 23:311–314

    Google Scholar 

  • Nubel RC, Ratajak ED (1964) Process for producing itaconic acid. US Patent 3,044,941 (to Pfizer)

  • Okabe M, Ohta N, Park Y (1993) Itaconic acid production in an air-lift bioreactor using a modified draft tube. J Ferment Bioeng 76:117–122

    Article  CAS  Google Scholar 

  • Onken U, Jostmann Th (1984) Influence of pressure on growth of pseudomonas fluorescens. Biotechnol Lett 6:413–418

    Article  CAS  Google Scholar 

  • Park Y, Ohta M, Okabe M (1993) Effect of dissolved oxygen concentration and agitation rate on itaconic acid production by Aspergillus terreus. Biotechnol Lett 15:583–586

    Article  CAS  Google Scholar 

  • Park Y, Itida M, Ohta N, Okabe M (1994) Itaconic acid production using an air-lift bioreactor in repeated batch culture of Aspergillus terreus. J Ferment Bioeng 77:329–331

    Article  CAS  Google Scholar 

  • Pfeifer VF, Vojnovich C, Heger EN (1952) Itaconic acid by fermentation with Aspergillus terreus. Ind Eng Chem 44:2975–2980

    Article  CAS  Google Scholar 

  • Pitzl G (1951) US Patent 2,570,478 (to Du Pont)

  • Reddy CS, Singh RP (2002) Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresour Technol 85:69–71

    Article  CAS  PubMed  Google Scholar 

  • Rober M, Kubicek C (1996) Production of primary metabolism. In: Rehm HJ, Reed G (eds) Biotechnology. VCHmbH, Weinhelm, pp 364–379

    Google Scholar 

  • Saitoh Y, Kanda K, Fukuda K (1993) Dental adhesive comprising an itaconic acid monoester compound. US Patent 5,234,972 (to Ube Ind. Ltd. Japan)

  • Sakai A, Kusumoto A, Kiso Y, Furuya E (2004) Itaconate reduces visceral fat by inhibiting fructose 2, 6-bisphosphate synthesis in rat liver. Nutrition 20:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Sen M, Yakar A (2001) Controlled release oof antifungal drug terbinafine hydrocholode from poly(N-vinyl 2-pyrrolidone/itaconic acid) hydrogels. Int J Pharm 228:33–41

    Article  CAS  PubMed  Google Scholar 

  • Siegel MH, Merchuk JC, Schugerl K (1986) Air-lift reactor analysis: Interrelationships between riser, downcomer, and gas–liquid separator behavior, including gas recirculation effects. AIChE J 32:1585–1596

    Article  CAS  Google Scholar 

  • Shimi IR, Nour EL, Dein MS (1962) Biosynthesis of itaconic acid by Aspergillus terreus. Arch Mikrobiol 44:181–188

    Article  CAS  PubMed  Google Scholar 

  • Smith JE, Nowakowska-Waszczuk A, Anderson JG (1974) Organic acid production by mycelial fungi. In: Spencer B (ed) Industrial aspects of biochemistry. Elsevier, Amsterdam, pp 297–317

    Google Scholar 

  • Stanojević M, Krušić MK, Filipović J, Parojći J, Stupar M (2006) An investigation into the influence of hydrogel composition on swelling behavior and drug release from poly(acrylamide-co-itaconic acid) hydrogels in various media. Informa Pharm Sci 13:1–7

    Google Scholar 

  • Tabuchi T (1981) Itaconic acid production by a yeast belonging to the group Candida. Agric Biol Chem 45:475–479

    CAS  Google Scholar 

  • Tabuchi T, Nakahara T (1980) Preparation of itaconic acid. JP Patent 55 034 017 (to Mitsubishi)

  • Tasdelen B, Kayaman-Apohan N, Güven O, Baysal BM (2004) Preparation of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels and their drug release behavior. Int J Pharm 278:343–351

    Article  CAS  PubMed  Google Scholar 

  • Tate BE (1981) Itaconic acid and derivatives. In: Grayson M, Eckroth E (eds) Kirk–Othmer encyclopedia of chemical technology, vol 3. Wiley, New York, pp 865–873

    Google Scholar 

  • Träger M, Qazi GN, Onken U, Chopra CL (1989) Comparison of airlift and stirred reactors for fermentation with Aspergillus niger. J Ferment Bioeng 68:112–116

    Article  Google Scholar 

  • Träger M, Qazi GN, Buse R, Onken U (1992) Comparison of direct glucose oxidation by Gluconobacter oxydans subsp. suboxydans and Aspergillus niger in a pilot scale airlift reactor. J Ferment Bioeng 74:274–281

    Article  Google Scholar 

  • Tsao GT, Cao NJ, Du J, Gong CS (1999) Production of multifunctional organic acids from renewable resources. Adv Biochem Eng Biotechnol 65:243–280

    CAS  PubMed  Google Scholar 

  • Walinsky SW (1984) (Meth) acrylic acid/itaconic acid copolymers their preparation and use as antiscalants. US Patent 4,485,223 (to Pfizer)

  • Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56(3–4):289–295

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Wu WT (1991) Fed-batch culture of Saccharomyces cerevisiae in an airlift reactor with net draft tube. Biotechnol Prog 7:230–233

    Article  CAS  Google Scholar 

  • Xing Y, Fikes JD, Guarente L (1993) Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain. EMBO J 12:4647–4655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahiro K, Takahama T, Park Y, Okabe M (1995) Breeding of Aspergillus terreus Mutant TN-484 for an itaconic acid production with high yield. J Ferm Bioeng 79:506–508

    Article  CAS  Google Scholar 

  • Yahiro K, Takahama T, Jia S, Park Y, Okabe M (1997a) Comparison of air-lift and stirred tank reactors for itaconic acid production by Aspergillus terreus. Biotechnol Lett 19:619–621

    Article  CAS  Google Scholar 

  • Yahiro K, Takahama T, Park Y, Okabe M (1997b) Efficient itaconic acid production from raw corn starch. J Ferm Bioeng 84:375–377

    Article  CAS  Google Scholar 

  • Yoshida F (1988) Bubble column research in Japan. Chem Eng Technol 11:205–212

    Article  Google Scholar 

  • Zhao CL, Roser J, Dersch R, Baunstark R (1999) Dispersion resins containing itaconic acid for improving wet abrasion resistance. WO Patent 9 947 611 (to BASF)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Y. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okabe, M., Lies, D., Kanamasa, S. et al. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus . Appl Microbiol Biotechnol 84, 597–606 (2009). https://doi.org/10.1007/s00253-009-2132-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2132-3

Keywords

Navigation