Skip to main content
Log in

Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The lipA gene, a structural gene encoding for protein of molecular mass 48 kDa, and lipB gene, encoding for a lipase-specific chaperone with molecular mass of 35 kDa, of Pseudomonas aeruginosa B2264 were co-expressed in heterologous host Escherichia coli BL21 (DE3) to obtain in vivo expression of functional lipase. The recombinant lipase was expressed with histidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. The amino acid sequence of LipA and LipB of P. aeruginosa B2264 was 99–100% identical with the corresponding sequence of LipA and LipB of P. aeruginosa LST-03 and P. aeruginosa PA01, but it has less identity with Pseudomonas cepacia (Burkholderia cepacia) as it showed only 37.6% and 23.3% identity with the B. cepacia LipA and LipB sequence, respectively. The molecular mass of the recombinant lipase was found to be 48 kDa. The recombinant lipase exhibited optimal activity at pH 8.0 and 37°C, though it was active between pH 5.0 and pH 9.0 and up to 45°C. K m and V max values for recombinant P. aeruginosa lipase were found to be 151.5 ± 29 µM and 217 ± 22.5 µmol min−1 mg−1 protein, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn LH, Lee YP, Rhee JS (1997) Investigation of refolding condition for Pseudomonas fluorescens lipase by response surface methodology. J Biotechnol 54:151–160

    Article  CAS  Google Scholar 

  • Amada K, Haruki M, Imanaka T, Morikawa M, Kanaya S (2000) Overproduction in Escherichia coli, purification and characterization of a family 1.3 lipase from Pseudomonas sp. MIS 38. Biochim Biophys Acta 1478:201–210

    CAS  Google Scholar 

  • Arpigny JS, Jaeger K-E (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1987) Current protocols in molecular biology, 2nd edn, vol 1. Wiley, New York

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chand S, Mishra P (2003) Research and applications of microbial enzymes–India’s contribution. Adv Biochem Eng/Biotechnol 85:95–124

    Article  CAS  Google Scholar 

  • Ferrer M, Chernikova TN, Timmis KN, Golyshin PN (2004) Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Appl Environ Microbiol 70:4499–4504

    Article  CAS  Google Scholar 

  • Fujii R, Nakagawa Y, Hiratake J, Sogabe A, Sakata K (2005) Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity. Protein Eng Des Sel 18:93–101

    Article  CAS  Google Scholar 

  • Gaur R, Gupta A, Khare SK (2008) Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA. Process Biochem 43:1040–1046

    Article  CAS  Google Scholar 

  • Hobson AH, Buckley CM, Aamand JL, Jorgensen ST, Diderichsen B, Mcconnell DJ (1993) Activation of a bacterial lipase by its chaperone. Proc Natl Acad Sci U S A 90:5682–5686

    Article  CAS  Google Scholar 

  • Ihara F, Kajeyama Y, Hirata M, Nihira T, Yumuda Y (1991) Purification, characterization, and molecular cloning of lactonizing lipase from Pseudomonas species. J Biol Chem 266:18135–18140

    CAS  Google Scholar 

  • Ihara F, Okamoto I, Akao K, Nihira T, Yamada Y (1995) Lipase modulator protein (LimL) of Pseudomonas sp. strain 109. J Bacteriol 177:1254–1258

    CAS  Google Scholar 

  • Jaeger K-E, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  Google Scholar 

  • Jorgensen S, Skov KW, Diderichsen B (1991) Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes. J Bacteriol 173:559–567

    CAS  Google Scholar 

  • Kato K, Tanaka S, Fujii S, Katayama M, Kimoto S (1999) Preparation of optically active trifluoromethylated (3′-indolyl) thiacarboxylic acids, novel plant growth regulators, through lipase-catalyzed enantioselective hydrolysis. J Biosci Bioeng 87:76–81

    Article  CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–245

    Article  CAS  Google Scholar 

  • Kojima Y, Kobayashi M, Shimizu S (2003) A novel lipase from Pseudomonas fluorescens HU380: gene cloning, overproduction, renaturation–activation, two-step purification and characterization. J Biosci Bioeng 96:242–249

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Liebeton K, Zonta A, Schimossek K, Nardini M, Reetz MT, Jaeger K-E (2000) Directed evolution of an enantioselective lipase. Chem Biol 7:709–718

    Article  CAS  Google Scholar 

  • Madan B, Mishra P (2009) Overexpression, purification and characterization of organic solvent stable lipase from Bacillus licheniformis RSP-09. J Mol Microbiol Biotechnol doi:10.1159/000208523

  • Nardini M, Lang DA, Liebeton K, Jaeger K-E, Dijkstra BW (2000) Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. J Biol Chem 275:31219–31225

    Article  CAS  Google Scholar 

  • Ogino H, Hiroshima S, Hirose S, Yasuda M, Ishmi K, Ishikawa K (2004a) Cloning, expression and characterization of a lipase gene (lip3) from Pseudomonas aeruginosa LST-03. Mol Gen Genomics 271:189–196

    Article  CAS  Google Scholar 

  • Ogino H, Mimitsuka T, Muto T, Matsmura M, Yasuda M, Ishimi K, Ishikawa H (2004b) Cloning, expression and characterization of a lipolytic enzyme (lip8) from Pseudomonas aeruginosa LST-03. J Mol Microbiol Biotechnol 7:212–223

    Article  CAS  Google Scholar 

  • Ogino H, Katou Y, Akagi R, Mimitsuka T, Hiroshima S, GembaY DN, Yasuda M, Ishimi K, Ishikawa H (2007) Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles 11:809–817

    Article  CAS  Google Scholar 

  • Omori K, Isoyama-Tanaka J, Ihara F, Yamada Y, Nihira T (2005) Active lactonizing lipase (LipL) efficiently overproduced by Pseudomonas strains as heterologous expression hosts. J Biosci Bioeng 100:323–330

    Article  CAS  Google Scholar 

  • Oshima-Hirayama N, Kazuhiro Y, Nishioka T, Oda J (1993) Lipase from Pseudomonas aeruginosa production in Escherichia coli and activation in vitro with a protein from the downstream gene. Eur J Biochem 215:239–246

    Article  CAS  Google Scholar 

  • Quyen DT, Schmidt-Dannert C, Schmid RD (1999) High-level formation of active Pseudomonas cepacia lipase after heterologous expression of the encoding gene and its modified chaperone in Escherichia coli and rapid in vitro refolding. Appl Environ Microbiol 65:787–794

    CAS  Google Scholar 

  • Reetz MT (2002) Lipases as practical biocatalysts. Current Opin Chem Biol 6:145–150

    Article  CAS  Google Scholar 

  • Reetz MT, Carballeira JD, Peyralans J, Hçbenreich H, Maichele A, Vogel A (2006) Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. Chem Eur J 12:6031–6038

    Article  CAS  Google Scholar 

  • Rosenau F, Tommassen J, Jaeger K-E (2004) Lipase-specific foldases. Chem Bio Chem 5:152–161

    CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shibata H, Kato H, Oda J (1998) Calcium ion-dependent reactivation of a Pseudomonas lipase by its specific modulating protein, LipB. J Biochem 123:136–141

    CAS  Google Scholar 

  • Strandberg L, Enfors S-O (1991) Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl Environ Microbiol 57:1669–1674

    CAS  Google Scholar 

  • Traub PC, Schmidt-Dannert C, Schmitt J, Schmid RD (2001) Gene synthesis, expression in E. coli, and in vitro refolding of Pseudomonas sp. KWI 56 and Chromobacterium viscosum lipases and their chaperones. Appl Microbiol Biotechnol 55:198–204

    Article  CAS  Google Scholar 

  • Ventura S (2005) Sequence determinants of protein aggregation: tools to increase protein solubility. Microb Cell Fact 4:1–8

    Article  Google Scholar 

  • Vera A, Gonzalez-Montalban N, Arıs A, Villaverde A (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96:1101–1106

    Article  CAS  Google Scholar 

  • Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670

    CAS  Google Scholar 

  • Yang J, Kobayashi K, Iwasaki Y, Nakano H, Yamane T (2000) In vitro analysis of roles of a disulfide bridge and a calcium binding site in activation of Pseudomonas sp. strain KWI-56 lipase. J Bacteriol 182:295–302

    Article  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1988) Enzymatic catalysis in nonaqueous solvents. J Biol Chem 263:3194–3201

    CAS  Google Scholar 

Download references

Acknowledgements

Bhawna Madan gratefully acknowledges senior research fellowship award from the Council of Scientific and Industrial Research, New Delhi, India. This work was partially supported by a grant from Ministry of Human Resource Development, Government of India to one of the authors (PM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madan, B., Mishra, P. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli . Appl Microbiol Biotechnol 85, 597–604 (2010). https://doi.org/10.1007/s00253-009-2131-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2131-4

Keyword

Navigation