Skip to main content

Advertisement

Log in

Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type I polyketide in Streptomyces coelicolor

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To seek more information on function of two-component regulatory systems (TCSs) in Streptomycescoelicolor, a dozen TCS-knockout mutants were generated, and phenotype changes were determined. One TCS (SCO5403/5404)-deleted mutant with phenotype change was obtained. Here, we report the characterization of this novel TCS, designated as RapA1/A2 (regulation of both actinorhodin and a type I polyketide), using genetic and proteomic approaches. Although growth and morphological analyses showed no difference between the knockout mutant and wild-type strain M145, a visible decrease of the production of actinorhodin (Act) was observed in rapA1/A2 mutant. The decrease can be restored by introducing rapA1/A2 genes on an integrative vector. A 2D-gel based proteomic analysis showed that knockout of rapA1/A2 resulted in reduced expression of a putative 3-oxoacyl-[acyl-carrier protein] reductase that is part of a biosynthetic cluster for a cryptic type I polyketide. Further reverse-transcriptase-polymerase chain reaction (RT-PCR) analyses confirmed that expression levels of several biosynthetic genes and the respective pathway-specific regulatory genes actII-ORF4 and kasO for these two clusters were all down-regulated in the rapA1/A2 mutant, compared to M145. Taken together, the results demonstrated that RapA1/A2 may serve as a positive regulator for biosynthesis of both Act and the uncharacterized polyketide in S. coelicolor, and the effects exerted by RapA1/A2 were dependent on the pathway-specific regulatory genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aceti DJ, Champness WC (1998) Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci. J Bacteriol 180:3100–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamidis T, Riggle P, Champness W (1990) Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J Bacteriol 172:2962–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson TB, Brian P, Champness WC (2001) Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol Microbiol 39:553–566

    Article  CAS  PubMed  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    PubMed  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215

    Article  CAS  PubMed  Google Scholar 

  • Bijlsma JJ, Groisman EA (2003) Making informed decisions: regulatory interactions between two-component systems. Trends Microbiol 11:359–366

    Article  CAS  PubMed  Google Scholar 

  • Chang HM, Chen MY, Shieh YT, Bibb MJ, Chen CW (1996) The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol Microbiol 21:1075–1085

    CAS  PubMed  Google Scholar 

  • Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463

    Article  CAS  PubMed  Google Scholar 

  • Gramajo HC, Takano E, Bibb MJ (1993) Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7:837–845

    Article  CAS  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hesketh AR, Chandra G, Shaw AD, Rowland JJ, Kell DB, Bibb MJ, Chater KF (2002) Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Mol Microbiol 46:917–932

    Article  CAS  PubMed  Google Scholar 

  • Hodgson DA (2000) Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microbial Physiol 42:47–238

    Article  CAS  Google Scholar 

  • Hong HJ, Paget MSB, Buttner MJ (2002) A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol Microbiol 44:1199–1211

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2497

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA (1999) Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology 145:2183–2202

    Article  CAS  PubMed  Google Scholar 

  • Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150:2795–2806

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka H, Horinouchi S, Kieser HM, Hopwood DA, Beppu T (1992) A putative 2-component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 174:7585–7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz L (1997) Manipulation of modular polyketide synthases. Chem Rev 97:2557–2576

    Article  CAS  PubMed  Google Scholar 

  • Khosla C, Gokhale RS, Jacobsen JR, Cane DE (1999) Tolerance and specificity of polyketide synthases. Ann Rev Biochem 68:219–253

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces Genetics. The John Innes Foundation, Norwich

  • Kim D, Forst S (2001) Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology 147:1197–1212

    Article  CAS  PubMed  Google Scholar 

  • Kormanec J, Sevcikova B, Homerova D (2000) Cloning of a two-component regulatory system probably involved in the regulation of chitinase in Streptomyces coelicolor A3(2). Folia Microbiol 45:397–406

    Article  CAS  Google Scholar 

  • Levdikov VM, Blagova EV, Brannigan JA, Wright L, Vagin AA, Wilkinson AJ (2005) The structure of the oligopeptide-binding protein, AppA, form Bacillus subtilis in complex with a nonapeptide. J Mol Biol 345:879–892

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Chen PL, Chen SF, Wu D, Zheng J (2004) A pair of two-component regulatory genes ecrA1/A2 in Streptomyces coelicolor. J Zhejiang Univ Sci 5:173–179

    Article  PubMed  Google Scholar 

  • Novotna J, Vohradsky J, Berndt P, Gramajo H, Langen H, Li XM, Minas W, Orsaria L, Roeder D, Thompson CJ (2003) Proteomic studies of diauxic lag in the differentiating prokaryote Streptomyces coelicolor reveal a regulatory network of stress-induced proteins and central metabolic enzymes. Mol Microbiol 48:1289–1303

    Article  CAS  PubMed  Google Scholar 

  • Ogura M, Tanaka T (2002) Recent progress in Bacillus subtilis two-component regulation. Fron Biosci 7:d1815–d1824

    Article  CAS  Google Scholar 

  • Okamoto S, Lezhava A, Hosaka T, Okamoto-Hosoya Y, Ochi K (2003) Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J Bacteriol 185:601–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paget MSB, Leibovitz E, Buttner MJ (1999) A putative two-component signal transduction system regulates sigma(E), a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2). Mol Microbiol 33:97–107

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Shin SK, Yang YY, Kwon HJ, Suh JW (2005) Accumulation of S-adenosylmethionine induced oligopeptide transporters including BldK to regulate differentiation events in Streptomyces coelicolor M145. FEMS Microbiol Lett 249:199–206

    Article  CAS  PubMed  Google Scholar 

  • Redenbach M, Kieser HM, Denapaite D, Eichner A, Cullum J, Kinashi H, Hopwood DA (1996) A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96

    Article  CAS  PubMed  Google Scholar 

  • Ryding NJ, Anderson TB, Champness WC (2002) Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J Bacteriol 184:794–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheeler NL, MacMillan SV, Nodwell JR (2005) Biochemical activities of the absA two-component system of Streptomyces coelicolor. J Bacteriol 187:687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178:7276–7284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sola-Landa A, Moura RS, Martin JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA 100:6133–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano E, Gramajo HC, Strauch E, Andres N, White J, Bibb MJ (1992) Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6:2797–2804

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Nihira T, Hara Y, Jones JJ, Gershater CJL, Yamada Y, Bibb M (2000) Purification and structural determination of SCB1, a gamma-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J Biol Chem 275:11010–11016

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41:1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, Smith CP, Bibb M, Wohlleben W, Chater K (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56:465–479

    Article  CAS  PubMed  Google Scholar 

  • Watanabe W, Sampei G, Aiba A, Mizohuchi K (1989) Identification and sequence analysis of Escherichia colipurE and purK genes encoding 5′-phophoribosyl-5-amino-4-imidazole carboxylase for de novo purine biosynthesis. J Bacteriol 171:198–204

    PubMed  PubMed Central  Google Scholar 

  • Wu G, Culley DE, Zhang WW (2005) Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism. Microbiology 151:2175–2187

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Cahoon M, Rosa P, Hedstrom L (1997) Expression, purification, and characterization of inosine 5’-monophosphate dehydrogenase from Borrelia burgdorferi. J Biol Chem 272:21977–21981

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Research Center for Proteome Analysis, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences for helps with 2D-PAGE and MOLDI-TOF analyses, and to Professor Keith Chater for kindly providing S. coelicolor cosmid 8F4, and all of the plasmids and strains used in PCR-targeting system.

This work was supported by National Natural Science Foundation of China (30470029), National Basic Research Program of China (2007CB707803) and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-G-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Jiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Wang, W., Shu, D. et al. Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type I polyketide in Streptomyces coelicolor . Appl Microbiol Biotechnol 77, 625–635 (2007). https://doi.org/10.1007/s00253-007-1184-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1184-5

Keywords

Navigation