Skip to main content
Log in

Thiosugars: new perspectives regarding availability and potential biochemical and medicinal applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thiosugars, containing a sulfur atom as heteroatom or a disaccharide linked via a sulfur bridge, possess unique physicochemical properties such as water solubility, which differs from conventional functionalized monosaccharides. The differences in biological activities between thiosugars and their oxygen analogs depend on geometric, conformational, and flexibility differences. They depend also on their electronic differences, the sulfide function being less electronegative and more polarizable than the ethereal moiety. Many functionalized thiosugars occur naturally and are potential targets for the development of carbohydrate-based therapeutics. Among the few new examples of the potential new targets are salacinol and kotalanol, tagetitoxin, thiolactomycin and analogues, mycothiol and analogues, and S-nitrosothiols. These new developments and representative examples of functionalized thiosugar prototypes as potential new targets are presented in this mini review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bornemann C, Jardine MA, Spies HSC, Steenkamp DJ (1997) Biosynthesis of mycothiol: elucidation of the sequence of steps in Mycobacterium smegmatis. Biochem J 325:623–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchet F, Driguez H, McAuliffe JC, Stick RV, Tilbrook DMG, Williams SJ (1996) A new approach to some 1,6-dideoxy-1,6-epithiosugars. Aust J Chem 49:343–348

    Google Scholar 

  • Buchmeier NA, Newton GL, Koledin T, Fahey RC (2003) Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol Microbiol 47:1723–1732

    CAS  PubMed  Google Scholar 

  • Capon RJ, MacLeod JK (1987) 5-Thio-d-mannose from marine sponge Clathria pyramida (Lendenfeld). The first example of a naturally occurring 5-thiosugar. J Chem Soc Chem Commun 15:1200–1201

    Google Scholar 

  • Chambers MS, Thomas EJ (1989) Total synthesis of (5S)-thiolactomycin-revision of the absolute configuration of the natural products. J Chem Soc Chem Commun 23–24

  • Davis BG, Ward SJ, Rendle PM (2001) Glycosyldisulfides: a new class of solution and solid phase glycosyl donors. Chem Commun 189–190

  • Defaye J, Gelas J (1991) Thio-oligosaccharides: their synthesis and reactions with enzymes. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 8E. Elsevier, Amsterdam, pp 315–357

    Google Scholar 

  • Dent BR, Furneaux RH, Gainsford GJ, Lynch GP (1999) Synthesis studies of structural analogues of tagetitoxin: 4-O-acetyl-3-amino-1,6-anhydro-3-deoxy-d-gulose 2-phosphate. Tetrahedron 55:6977–6996

    CAS  Google Scholar 

  • Dey PM, Witczak ZJ (2003) Functionalized S-thio-di and S-oligosaccharide precursors as templates for novel SLex/a mimetic antimetastatic agents. Mini Rev Med Chem 3:271–280

    CAS  PubMed  Google Scholar 

  • Diez D, Beneitez MT, Marcos IS, Garrido NM, Basabe P, Urones JG (2004) 1-Hydroxymethyl-4-phenylsulfonylbutadiene, a versatile building block for the synthesis of 2,3,4-trisubstituted terahydrothiophenes. Molecules 9:323–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas JD, Senior SJ, Morehouse C, Phetsukiri B, Campbell IB, Besra GS, Minnikin DE (2002) Analogues of thiolactomycin: potential drugs with enhanced anti-microbial activity. Microbiology 148:3101–3109

    CAS  PubMed  Google Scholar 

  • Driguez H (1997) Thiooligosaccharides in glycobiology. Top Curr Chem 187:85–116

    CAS  Google Scholar 

  • Eisele T, Toepfer A, Kretzschmar G, Schmidt RR (1996) Synthesis of S-thiolinked analogue of sialyl Lewis X. Tetrahedron Lett 37:1389–1392

    CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isocyanates among plants. Phytochemistry 56:5–51

    CAS  PubMed  Google Scholar 

  • Fang FC (1997) Mechanism of nitric oxide-related antimicrobial activity. J Clin Invest 99:2818–2825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Bolanos JG, Al-Masoudi AL, Maya I (2001) Sugar derivatives having sulfur in the ring. Adv Carbohydr Chem Biochem 57:21–98

    CAS  PubMed  Google Scholar 

  • Ghavami A, Sadalapure KS, Johnston BD, Lobera M, Snider BB, Pinto BM (2003) Improved syntheses of naturally occurring glycosidase inhibitor salacinol. Synlett 1259–1262

  • Ibatullin FM, Shabalin KA, Janis JV, Selivanov SI (2001) Stereoselective synthesis of thioxylooligosaccharides from S-glycosyl iso-thiourea precursors. Tetrahedron Lett 42:565–4567

    Google Scholar 

  • Ibatullin FM, Shabalin KA, Janis JV, Shavva AG (2003) Reaction of 1,2-trans-glycosyl acetates with thiourea: a new entry to 1-thiosugars. Tetrahedron Lett 44:7961–7964

    CAS  Google Scholar 

  • Ioannou M, Porter MJ, Saez F (2002) A ring expansion reaction of 1,3-oxathiolanes. Chem Commun 346–347

  • Izquierdo I, Plaza MT, Asenjo R, Ramirez A (2002) Thioanhydrosugars. Part 9. Enantiospecific synthesis of a polyhydroxythiolane, key intermediate for the preparation of glycosidase inhibitors bearing inner thiosulfonium salt. Tetrahedron Asymmetry 13:1417–1421

    CAS  Google Scholar 

  • Jahn M, Withers SG (2003) New approaches to enzymatic oligosaccharide synthesis: glycosynthases and thioglycoligases. Biocatal Biotransform 21(4/5):159–166

    CAS  Google Scholar 

  • Jahn M, Marles J, Warren RAJ, Withers SG (2003) Thioglycoligases: mutant glycosidases for thioglycoside synthesis. Angew Chem 115(3):366–368

    Google Scholar 

  • Jardine MA, Spies HSC, Nkambule CM, Gammon DW, Steenkamp DJ (2002) Synthesis of mycothiol, 1d-1-O-(2-[N-acetyl-l-cysteinyl]amino-2-deoxy-α-d-gluco-pyranosyl)-myo-inositol, principal low molecular mass thiol in the actinomycetes. Bioorg Med Chem 10:875–881

    CAS  PubMed  Google Scholar 

  • Jones AL, Herbert D, Rutter AJ, Dancer JE, Harwood JL (2000) Novel inhibitors of the condensing enzymes of the type II fatty acid synthase of pea (Pisum sativum). Biochem J 347:205–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones SM, Urch JE, Brun R, Harwood JL, Berry C, Gilbert IH (2004) Analogues of thiolactomycin as potential anti-malarial and anti-trypanosomal agents. Bioorg Med Chem 12:683–692

    CAS  PubMed  Google Scholar 

  • Khan F, Pearson RJ, Newton DJ, Belch JJ, Butler AR (2003) Chemical synthesis and microvascular effects of new nitric oxide donors in humans. Clin Sci 105:577–584

    CAS  PubMed  Google Scholar 

  • Knapp S, Gonzalez S, Myers DS, Eckman LL, Bewley CA (2002) Shortcut to mycothiol analogues. Org Lett 4:4337–4339

    CAS  PubMed  Google Scholar 

  • Knapp S, Amorelli B, Darout E, Ventocilla CC, Goldman LM, Huhn RA, Minihan EC (2005) A family of mycothiol analogues. J Carbohydr Chem 24:103–130

    CAS  Google Scholar 

  • Kremer L, Douglas JD, Baulard AR, Morehouse C, Guy MR, Alland D, Dover LG, Lakey JH, Jacobs WR Jr, Brennan PJ, Minnikin DE, Besra GS (2000) Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J Biol Chem 275:16857–16864

    CAS  PubMed  Google Scholar 

  • Lee S, Rosazza JPN (2004) First total synthesis of mycothiol and mycothiol disulfide. Org Lett 6:365–368

    CAS  PubMed  Google Scholar 

  • Liu H, Pinto BM (2005) Efficient synthesis of glucosidase inhibitor, blintol the selenium analogue of the naturally occurring glucosidase inhibitor salacinol. J Org Chem 70:735–755

    Google Scholar 

  • Lundt I, Skelbaek-Pedersen B (1981) Ethylation of thiolaevoglucosan to a crystalline sulfonium salt and reaction of the latter with nucleophile. Acta Chem Scand B 35:637–642

    Google Scholar 

  • Mathews DE, Durbin RD (1990) Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and Escherichia coli. J Biol Chem 265:493–498

    CAS  PubMed  Google Scholar 

  • Matsuda H, Morikawa T, Yoshikawa M (2002) Antidiabetogenic constituents from several natural medicines. Pure Appl Chem 74:1301–1308

    CAS  Google Scholar 

  • Mavratzotis M, Dourtoglou V, Lorin C, Rollin P (1996) Glucosinolate chemistry. First synthesis of glucosinolates bearing an external thiofunction. Tetrahedron Lett 37:5699–5700

    CAS  Google Scholar 

  • Maynes JT, Garen C, Cherney MM, Newton G, Arad D, Av-Gay Y, Fahey RC, James MNG (2003) The crystal structure of 1-d-myo-inosityl-2-acetamido-2-deoxy-α-d-glucopyranoside deacetylase (MshB) from Mycobacterium tuberculosis reveals a zinc hydrolase with lactate dehydrogenase fold. J Biol Chem 278:47166–47170

    CAS  PubMed  Google Scholar 

  • McFadden JM, Frehywot GL, Townsend CA (2002) A flexible route to (5R)-thiolactomycin a naturally occurring inhibitor of fatty acid synthesis. Org Lett 4:3859–3862

    CAS  PubMed  Google Scholar 

  • Misset-Smits M, van Ophem PW, Sakuda S, Duine JA (1997) Mycothiol, 1-O-(2′-[N-acetyl-l-cysteinyl]amido-2′deoxy-α-d-glucopyranosyl-d-myo-inositol, is the factor of NAD/factor dependent formaldehyde dehydrogenase. FEBS Lett 409:221–222

    CAS  PubMed  Google Scholar 

  • Mitchell RE, Durbin RD (1981) Tagetitoxin, a toxin produced by Pseudomonas syringae pv tagetis: purification and partial characterization. Physiol Plant Pathol 18:157–168

    CAS  Google Scholar 

  • Mitchell RE, Coddington JM, Young H (1989) A revised structure for tagetitoxin. Tetrahedron Lett 30:501–504

    CAS  Google Scholar 

  • Miyakawa S, Suzuki K, Noto T, Haranda Y, Okazaki H (1982) Thiolactomycin a new antibiotic. IV. Biological properties and chemotherapeutic activity in mice. J Antibiot (Tokyo) 35:411–419

    CAS  Google Scholar 

  • Moynihan HA, Roberts SM (1994) Preparation of some novel S-nitroso compounds as potential slow-release agents for nitric oxide in vivo. J Chem Soc Perkin Trans I:797–805

    Google Scholar 

  • Newton GL, Arnold K, Price MS, Sherrill C, delCardayre SB, Aharonowitz Y, Cohen G, Davies J, Fahey RC, Davis C (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178:1990–1995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newton GL, Unson MD, Anderberg SJ, Aguilera JA, Oh NN, delCardayre SB, Av-Gay Y, Fahey RC (1999) Characterization of Mycobacterium smegmatis mutants defective in 1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside and mycothiol biosynthesis. Biochem Biophys Res Commun 255:239–244

    CAS  PubMed  Google Scholar 

  • Newton GL, Av-Gay Y, Fahey RC (2000) A novel mycothiol-dependent detoxification pathway in mycobacteria involving mycothiol-S-conjugate amidase. Biochemistry 39:10739–10749

    CAS  PubMed  Google Scholar 

  • Nicholas GM, Bewley CA (2004) Inhibitors of mycothiol-S-conjugate amidase and related genes. Curr Med Chem Anti-Infect Agents 3:221–231

    CAS  Google Scholar 

  • Nicholas GM, Kovac P, Bewley CA (2002) Total synthesis and proof of structure of mycothiol bimane. J Am Chem Soc 124:3492–3493

    CAS  PubMed  Google Scholar 

  • Oishi H, Noto T, Suzuki K, Hayashi T, Okazaki H, Ando K, Sawada M (1982) Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism fermentation and biological properties. J Antibiot (Tokyo) 35:391–395

    CAS  Google Scholar 

  • Patel MP, Blanchard JS (1998) Synthesis of des-myo-inositol mycothiol and demonstration of a mycobacterial specific reductase activity. J Am Chem Soc 120:11538–11539

    CAS  Google Scholar 

  • Price AC, Choi K-H, Heath RJ, Li Z, White SW, Rock CO (2001) Inhibition of β-ketoacyl-[acyl carrier protein] synthases by thiolactomycin and cerulenin: structure and mechanism. J Biol Chem 276:6551–6559

    CAS  PubMed  Google Scholar 

  • Robina I, Vogel P (2002) Synthesis and biological properties of oligothiosaccharides. Curr Org Chem 6:1177–1214

    Google Scholar 

  • Robina I, Vogel P, Witczak ZJ (2001) Synthesis and biological properties of monothiosaccharides. Curr Org Chem 5:1177–1214

    CAS  Google Scholar 

  • Sareen D, Steffek M, Newton GL, Fahey RC (2002) ATP-dependent-l-cysteine: 1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranosideligase, mycothiol biosynthesis enzyme MshC, is related to class I cysteinyl-t-RNA synthetases. Biochemistry 41:6885–6890

    CAS  PubMed  Google Scholar 

  • Slayden RA, Lee RE, Armour JW, Cooper AM, Orme IM, Brennan PJ, Besra GS (1996) Antimicrobial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob Agents Chemother 40:2813–2819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg TH, Mathews DE, Durbin RD, Burgess RR (1990) Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J Biol Chem 265:499–505

    CAS  PubMed  Google Scholar 

  • Szczepina MG, Yuan Y, Johnston BD, Svensson B, Pinto BM (2004) Synthesis of alkylated deoxynojirimycin and 1,5-dideoxy-1,5-iminoxylitol analogues: Polar side-chain modification, sulfonium and selenonium heteroatom variants, conformational analysis, and evaluation as glycosidase inhibitors. J Am Chem Soc 126:12458–12469

    CAS  PubMed  Google Scholar 

  • Trimboli D, Fahy PC, Baker KF (1978) Apical chlorosis and leaf spot of Tagetes spp. caused by Pseudomonas tagetis Hellmers. Aust J Agric Res 29:831–839

    Google Scholar 

  • Varela O (1997) Aldonolactones as chiral templates in the synthesis of thiolactones, 1,3-polyols and hydroxyl amino acids. Pure Appl Chem 69:621–626

    CAS  Google Scholar 

  • Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ (2002) Nitric oxide donors: chemical activities and biological applications. Chem Rev 102:1091–1134

    CAS  PubMed  Google Scholar 

  • Witczak ZJ (1999) Thio-sugars biological relevance as potential therapeutics. Curr Med Chem 6:165–178

    CAS  PubMed  Google Scholar 

  • Witczak ZJ, Sun J, Mielguj R (1995) Synthesis of l-fucopyranosyl-4-S-thiodisaccharides from levoglucosenone and their inhibitory activity on l-fucosidase. Bioorg Med Chem Lett 5:2169–2171

    CAS  Google Scholar 

  • Witczak ZJ, Chhabra R, Chen H, Xie X-Q (1997) Thio-sugars II. A novel approach to thiodisaccharides. The synthesis of 3-deoxy-4-thiocellobiose from levoglucosenone. Carbohydr Res 301:167–175

    CAS  Google Scholar 

  • Witczak ZJ, Chen H, Kaplon P (2000a) Thio-sugars V. From d-glucal to 3-deoxy-(1–2)-2-S-thiodisaccharides through isolevoglucosenone a simple approach. Tetrahedron Asymmetry 11:519–532

    CAS  Google Scholar 

  • Witczak ZJ, Chhabra R, Boryczewski D (2000b) Thio-sugars III. Stereoselective approach to β-(1–2)-2,3-dideoxy-3-C-acetamidomethyl-2-S-thiodisaccharides from levoglucosen-one. J Carbohydr Chem 19:543–553

    CAS  Google Scholar 

  • Witczak ZJ, Kaplon P, Kolodziej M (2002) Thio-sugars VI. A simple stereoselective approach to (1–3)-S-thiodisaccharides from levoglucosenone. Monatsh Chem 133:521–539

    CAS  Google Scholar 

  • Witczak ZJ, Kaplan P, Dey PM (2003) Thio-sugars VII. Effects of α-(1–4)-3′-deoxythiodisaccharides and their sulfoxides and sulfones on the viability and growth of selected murine and human tumor cell line. Carbohydr Res 338:11–18

    CAS  PubMed  Google Scholar 

  • Xu W, Springfield SA, Koh JT (2000) Highly efficient synthesis of 1-thioglycosides in solution and solid phase using iminophosphorane bases. Carbohydr Res 325:169–176

    CAS  PubMed  Google Scholar 

  • Yoshikawa M, Murakami T, Shimada H, Matsuda H, Yamahara J, Tanabe G, Muraoka O (1997) Salacinol, potent antidiabetic principle with unique thiosugar sulfonium sulfate structure from the Ayurvedic traditional medicine Salacia reticulata in Sri Lanka and India. Tetrahedron Lett 38:8367–8370

    CAS  Google Scholar 

  • Yoshikawa M, Murakami T, Yashiro K, Matsuda H (1998) Kotalanol, a potent a-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic Ayurvedic medicine Salacia reticulata. Chem Pharm Bull 46:1339–1340

    CAS  PubMed  Google Scholar 

  • Yu HN, Ling C-C, Bundle DR (2001) Efficient stereoselective synthesis of 1-thio-β-mannopyranosides. J Chem Soc Perkin Trans 1:832–837

    Google Scholar 

  • Zhu X, Schmidt RR (2004) Efficient synthesis of S-linked glycopeptides in aqueous solution by a convergent strategy. Chem Eur J 10:875–887

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew J. Witczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witczak, Z.J., Culhane, J.M. Thiosugars: new perspectives regarding availability and potential biochemical and medicinal applications. Appl Microbiol Biotechnol 69, 237–244 (2005). https://doi.org/10.1007/s00253-005-0156-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0156-x

Keywords

Navigation