Skip to main content

Advertisement

Log in

NK gene complex and chromosome 19 loci enhance MHC resistance to murine cytomegalovirus infection

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

An H-2k MHC locus is critical for murine cytomegalovirus (MCMV) resistance in MA/My mice and virus control is abolished if H-2k is replaced with H-2b MHC genes from MCMV-susceptible C57L mice. Yet, H-2k resistance varies with genetic background; thus, modifiers of virus resistance must exist. To identify non-MHC resistance loci, spleen and liver MCMV levels and genome-wide genotypes were assessed in (C57L × MA/My) and (MA/My × C57L) F2 offspring (representing 550 meioses). Significantly, a non-Mendelian frequency of MHC genotypes was observed for offspring of the latter cross. Quantitative trait loci (QTL) and their interaction potential in MCMV resistance were assessed in R/qtl; QTL on chromosomes 17, 6, and 19 affected MCMV levels in infected animals. A chromosome 6 QTL was linked with the NK gene complex and acted in an additive fashion with an H-2k MHC QTL to mitigate spleen MCMV levels. We provide biological confirmation that this chromosome 6 QTL provided MCMV control independent of H-2k via NK cells. Importantly, both chromosome 6 and 19 QTLs contribute to virus control independent of H-2k. Altogether, MHC and non-MHC MCMV-resistance QTL contribute in early resistance to MCMV infection in this genetic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alter G, Martin MP, Teigen N, Carr WH, Suscovich TJ, Schneidewind A, Streeck H, Waring M, Meier A, Brander C, Lifson JD, Allen TM, Carrington M, Altfeld M (2007) Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J Exp Med 204:3027–3036

    Article  PubMed  CAS  Google Scholar 

  • Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Georgel P, Rutschmann S, Jiang Z, Croker B, Crozat K (2005) Genetic analysis of innate resistance to mouse cytomegalovirus (MCMV). Brief Funct Genomic Proteomic 4:203–213

    Article  PubMed  CAS  Google Scholar 

  • Broman KW, Speed TP (2003) A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Statist Soc B 64:641–656

    Article  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Brown MG, Scalzo AA (2008) NK gene complex dynamics and selection for NK cell receptors. Semin Immunol 20:361–368

    Article  PubMed  CAS  Google Scholar 

  • Brown MG, Dokun AO, Heusel JW, Smith HR, Beckman DL, Blattenberger EA, Dubbelde CE, Stone LR, Scalzo AA, Yokoyama WM (2001a) Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292:934–937

    Article  PubMed  CAS  Google Scholar 

  • Brown MG, Scalzo AA, Stone LR, Clark PY, Du Y, Palanca B, Yokoyama WM (2001b) Natural killer gene complex (Nkc) allelic variability in inbred mice: evidence for Nkc haplotypes. Immunogenetics 53:584–591

    Article  PubMed  CAS  Google Scholar 

  • Carrington M, Martin MP (2006) The impact of variation at the KIR gene cluster on human disease. Curr Top Microbiol Immunol 298:225–257

    Article  PubMed  CAS  Google Scholar 

  • Chalmer JE, Mackenzie JS, Stanley NF (1977) Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse. J Gen Virol 37:107–114

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Daniels KA, Devora G, Lai WC, O'Donnell CL, Bennett M, Welsh RM (2001) Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J Exp Med 194:29–44

    Article  PubMed  CAS  Google Scholar 

  • Desrosiers MP, Kielczewska A, Loredo-Osti JC, Adam SG, Makrigiannis AP, Lemieux S, Pham T, Lodoen MB, Morgan K, Lanier LL, Vidal SM (2005) Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection. Nat Genet 37:593–599

    Article  PubMed  CAS  Google Scholar 

  • Dighe A, Rodriguez M, Sabastian P, Xie X, McVoy M, Brown MG (2005) Requisite H2k role in NK cell-mediated resistance in acute murine cytomegalovirus-infected MA/My mice. J Immunol 175:6820–6828

    PubMed  CAS  Google Scholar 

  • Grundy JE, Mackenzie JS, Stanley NF (1981) Influence of H-2 and non-H-2 genes on resistance to murine cytomegalovirus infection. Infect Immun 32:277–286

    PubMed  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    PubMed  CAS  Google Scholar 

  • Heeney JL, Dalgleish AG, Weiss RA (2006) Origins of HIV and the evolution of resistance to AIDS. Science 313:462–466

    Article  PubMed  CAS  Google Scholar 

  • Hiby SE, Walker JJ, O'Shaughnessy KM, Redman CW, Carrington M, Trowsdale J, Moffett A (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200:957–965

    Article  PubMed  CAS  Google Scholar 

  • Hiby SE, Regan L, Lo W, Farrell L, Carrington M, Moffett A (2008) Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum Reprod 23:972–976

    Article  PubMed  CAS  Google Scholar 

  • Jennes W, Verheyden S, Demanet C, Adje-Toure CA, Vuylsteke B, Nkengasong JN, Kestens L (2006) Cutting edge: resistance to HIV-1 infection among African female sex workers is associated with inhibitory KIR in the absence of their HLA ligands. J Immunol 177:6588–6592

    PubMed  CAS  Google Scholar 

  • Johansson S, Salmon-Divon M, Johansson MH, Pickman Y, Brodin P, Karre K, Mehr R, Hoglund P (2009) Probing natural killer cell education by Ly49 receptor expression analysis and computational modelling in single MHC class I mice. PLoS ONE 4:e6046

    Article  PubMed  CAS  Google Scholar 

  • Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J, Cheng J, Goedert JJ, Vlahov D, Hilgartner M, Cox S, Little AM, Alexander GJ, Cramp ME, O'Brien SJ, Rosenberg WM, Thomas DL, Carrington M (2004) HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305:872–874

    Article  PubMed  CAS  Google Scholar 

  • Korbel DS, Norman PJ, Newman KC, Horowitz A, Gendzekhadze K, Parham P, Riley EM (2009) Killer Ig-like receptor (KIR) genotype predicts the capacity of human KIR-positive CD56dim NK cells to respond to pathogen-associated signals. J Immunol 182:6426–6434

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Landolfo S, Gariglio M, Gribaudo G, Lembo D (2003) The human cytomegalovirus. Pharmacol Ther 98:269–297

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Girard S, Macina D, Busa M, Zafer A, Belouchi A, Gros P, Vidal SM (2001a) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28:42–45

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Gitas J, Zafer A, Lepage P, Hudson TJ, Belouchi A, Vidal SM (2001b) Haplotype mapping indicates two independent origins for the Cmv1s susceptibility allele to cytomegalovirus infection and refines its localization within the Ly49 cluster. Immunogenetics 53:501–505

    Article  PubMed  CAS  Google Scholar 

  • Loh J, Chu DT, O'Guin AK, Yokoyama WM, Virgin HW IV (2005) Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. J Virol 79:661–667

    Article  PubMed  CAS  Google Scholar 

  • Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, Trowsdale J, Wilson M, O'Brien SJ, Carrington M (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31:429–434

    PubMed  CAS  Google Scholar 

  • Martin MP, Qi Y, Gao X, Yamada E, Martin JN, Pereyra F, Colombo S, Brown EE, Shupert WL, Phair J, Goedert JJ, Buchbinder S, Kirk GD, Telenti A, Connors M, O'Brien SJ, Walker BD, Parham P, Deeks SG, McVicar DW, Carrington M (2007) Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet 39:733–40

    Article  PubMed  CAS  Google Scholar 

  • Orange JS (2002) Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4:1545–1558

    Article  PubMed  CAS  Google Scholar 

  • Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5:201–214

    Article  PubMed  CAS  Google Scholar 

  • Parham P (2008) The genetic and evolutionary balances in human NK cell receptor diversity. Semin Immunol 20:311–316

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Sabastian P, Clark P, Brown MG (2004) Cmv1-independent antiviral role of NK cells revealed in murine cytomegalovirus-infected New Zealand White mice. J Immunol 173:6312–6318

    PubMed  CAS  Google Scholar 

  • Rodriguez MR, Lungren A, Sabastian P, Li QGC, Brown MG (2009) A Cmv2 QTL on chromosome X affects MCMV resistance in New Zealand male mice. Mamm Genome 20:414–23

    Article  PubMed  CAS  Google Scholar 

  • Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR (1990) Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med 171:1469–1483

    Article  PubMed  CAS  Google Scholar 

  • Scalzo AA, Fitzgerald NA, Wallace CR, Gibbons AE, Smart YC, Burton RC, Shellam GR (1992) The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol 149:581–589

    PubMed  CAS  Google Scholar 

  • Scalzo AA, Lyons PA, Fitzgerald NA, Forbes CA, Yokoyama WM, Shellam GR (1995) Genetic mapping of Cmv1 in the region of mouse chromosome 6 encoding the NK gene complex-associated loci Ly49 and musNKR-P1. Genomics 27:435–441

    Article  PubMed  CAS  Google Scholar 

  • Scalzo AA, Manzur M, Forbes CA, Brown MG, Shellam GR (2005) NK gene complex haplotype variability and host resistance alleles to murine cytomegalovirus in wild mouse populations. Immunol Cell Biol 83:144–149

    Article  PubMed  CAS  Google Scholar 

  • Scalzo AA, Corbett AJ, Rawlinson WD, Scott GM, Degli-Esposti MA (2007) The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection. Immunol Cell Biol 85:46–54

    Article  PubMed  CAS  Google Scholar 

  • Silver ET, Lavender KJ, Gong DE, Hazes B, Kane KP (2002) Allelic variation in the ectodomain of the inhibitory Ly-49G2 receptor alters its specificity for allogeneic and xenogeneic ligands. J Immunol 169:4752–4760

    PubMed  Google Scholar 

  • Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, Scalzo AA, Fremont DH, Yokoyama WM (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 99:8826–8831

    PubMed  CAS  Google Scholar 

  • Sumaria, N., van Dommelen, S. L., Andoniou, C. E., Smyth, M. J., Scalzo, A. A., and Degli-Esposti, M. A. (2009) The roles of interferon-gamma and perforin in antiviral immunity in mice that differ in genetically determined NK-cell-mediated antiviral activity. Immunol Cell Biol 87:559–566

    Google Scholar 

  • Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, Beutler B (2006) The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7:156–164

    Article  PubMed  CAS  Google Scholar 

  • Tay CH, Welsh RM (1997) Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J Virol 71:267–275

    PubMed  CAS  Google Scholar 

  • van Dommelen SL, Tabarias HA, Smyth MJ, Degli-Esposti MA (2003) Activation of natural killer (NK) T cells during murine cytomegalovirus infection enhances the antiviral response mediated by NK cells. J Virol 77:1877–1884

    Article  PubMed  CAS  Google Scholar 

  • Wheat RL, Clark PY, Brown MG (2003) Quantitative measurement of infectious murine cytomegalovirus genomes in real-time PCR. J Virol Methods 112:107–113

    Article  PubMed  CAS  Google Scholar 

  • Wesley JD, Tessmer MS, Chaukos D, Brossay L (2008) NK cell-like behavior of V?14i NK T cells during MCMV infection. PLoS Pathog 4:e1000106

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Dighe A, Clark P, Sabastian P, Buss S, Brown MG (2007) Deficient major histocompatibility complex-linked innate murine cytomegalovirus immunity in MA/My.L-H2b mice and viral downregulation of H-2k class I proteins. J Virol 81:229–236

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Stadnisky MD, Brown MG (2009) MHC class I Dk locus and Ly49G2+ NK cells confer H-2k resistance to murine cytomegalovirus. J Immunol 182:7163–7171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Corinne Abalos and Susan Alejandra Sainz for technical assistance. This work was supported by National Institutes of Health (NIH) National Institute of Allergy and Infectious Disease Grant R01 AI050072. M.D.S was supported by the NIH Interdisciplinary Training Program in Immunology (5T32 AI07496) and the NIH Biotechnology Training Program (T32 GM08715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadnisky, M.D., Manichaikul, A., Lundgren, A.G. et al. NK gene complex and chromosome 19 loci enhance MHC resistance to murine cytomegalovirus infection. Immunogenetics 61, 755–764 (2009). https://doi.org/10.1007/s00251-009-0400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-009-0400-0

Keywords

Navigation