Skip to main content
Log in

Allelic polymorphism of T-cell receptor constant domains is widespread in fishes

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

T-cell receptor chains contain membrane-proximal constant domains of the immunoglobulin superfamily that are relatively invariant in mammalian species. In contrast, recent studies in the bicolor damselfish have demonstrated surprising allelic polymorphism in the TCR alpha (A) and TCR beta (B) “constant” (C) domain genes. This report extends these initial observations beyond Perciformes to two other orders of teleost fishes. Studies in both the Atlantic cod and zebrafish show high levels of polymorphism in the TCRA constant genes. Levels of 13% and 15% amino acid nonidentity were found within cod and zebrafish, respectively. Evolutionary analysis of codon usage suggests that positive selection maintains the high number of TCRAC alleles in these fish populations. Additionally, investigation of a TCRB constant gene from the Beau Gregory, a sister species of the bicolor damselfish, shows no evidence of transpecies maintenance of constant region alleles. These data argue that the T-cell receptor constant domain is being employed by many vertebrates in a manner inconsistent with our current understanding, and may indicate unheralded complexity in signal transduction through the TCR/CD3 complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A–F
Fig. 4A, B

Similar content being viewed by others

References

  • Bragado R, Garcia A, Trevino MA, Vilches C, Lopez de Castro JA (1994) Allelic polymorphism in the coding region of human TCR C alpha gene and characterization of structural variability in the alpha chain constant domain. Int Immunol 6:223–230

    CAS  PubMed  Google Scholar 

  • Campbell KS, Backstrom BT, Tiefenthaler G, Palmer E (1994) CART: a conserved antigen receptor transmembrane motif. Semin Immunol 6:393–410

    CAS  PubMed  Google Scholar 

  • Carrol RH (1988) Vertebrate paleontology and evolution. Freeman, New York

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299

    CAS  PubMed  Google Scholar 

  • Criscitiello MF, Kamper SM, McKinney EC (2004) Allelic polymorphism of TCRα chain constant domain genes in the bicolor damselfish. Dev Comp Immunol (in press)

  • Haire RN, Rast JP, Litman RT, Litman GW (2000) Characterization of three isotypes of immunoglobulin light chains and T-cell antigen receptor alpha in zebrafish. Immunogenetics 51:915–923

    CAS  PubMed  Google Scholar 

  • Haire RN, Kitzan Haindfield MK, Turpen JB, Litman GW (2002) Structure and diversity of T-lymphocyte antigen receptors alpha and gamma in Xenopus. Immunogenetics 54:431–438

    Article  CAS  PubMed  Google Scholar 

  • Hayday AC, Diamond DJ, Tanigawa G, Heilig JS, Folsom V, Saito H, Tonegawa S (1985) Unusual organization and diversity of T-cell receptor alpha-chain genes. Nature 316:828–832

    CAS  PubMed  Google Scholar 

  • Hedrick SM, Nielsen EA, Kavaler J, Cohen DI, Davis MM (1984) Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. Nature 308:153–158

    CAS  PubMed  Google Scholar 

  • Hughes A (1999) Adaptive evolution of genes and genomes. Oxford University Press, New York

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170

    PubMed  Google Scholar 

  • Kamper SM, McKinney EC (2002) Polymorphism and evolution in the constant region of the T-cell receptor beta chain in an advanced teleost fish. Immunogenetics 53:1047

    Article  CAS  PubMed  Google Scholar 

  • Kuchroo VK, Collins M, al-Sabbagh A, Sobel RA, Whitters MJ, Zamvil SS, Dorf ME, Hafler DA, Seidman JG, Weiner HL, et al (1994) T cell receptor (TCR) usage determines disease susceptibility in experimental autoimmune encephalomyelitis: studies with TCR V beta 8.2 transgenic mice. J Exp Med 179:1659–1664

    CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244–1245

    CAS  PubMed  Google Scholar 

  • Lawlor DA, Ward FE, Ennis PD, Jackson AP, Parham P (1988) HLA-A and B polymorphisms predate the divergence of humans and chimpanzees. Nature 335:268–271

    CAS  PubMed  Google Scholar 

  • Lefranc MP, Rabbitts TH (1989) The human T-cell receptor gamma (TRG) genes. Trends Biochem Sci 14:214–218

    Article  CAS  PubMed  Google Scholar 

  • Li WH (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99

    CAS  PubMed  Google Scholar 

  • Li WH, Wu CI, Luo CC (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    Google Scholar 

  • Nelson JS (1994) Fishes of the world. Wiley, New York

  • Nobuhara H, Kuida K, Furutani M, Shiroishi T, Moriwaki K, Yanagi Y, Tada T (1989) Polymorphism of T-cell receptor genes among laboratory and wild mice: diverse origins of laboratory mice. Immunogenetics 30:405–413

    CAS  PubMed  Google Scholar 

  • Ota T, Nei M (1994) Variance and covariances of the numbers of synonymous and nonsynonymous substitutions per site. Mol Biol Evol 11:613–619

    CAS  PubMed  Google Scholar 

  • Pamilo P, Bianchi NO (1993) Evolution of Zfx and Zfy genes: Rates and interdependence between genes. Mol Biol Evol 10:271

    Google Scholar 

  • Robinson MA, Kindt TJ (1985) Molecular determination of T-cell receptor alpha and beta chain genotypes in human families. Hum Immunol 14:195–205

    Article  CAS  PubMed  Google Scholar 

  • Robinson MA, Kindt TJ (1987) Genetic recombination within the human T-cell receptor alpha-chain gene complex. Proc Natl Acad Sci USA 84:9089–9093

    CAS  PubMed  Google Scholar 

  • Rubin B, Arnaud J, Caspar-Bauguil S, Conte F, Huchenq A (1994) Biological function of the extracellular domain of the T-cell receptor constant region. Scand J Immunol 39:517–525

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Schiffer M, Kabat EA, Wu TT (1992) Subgroups of Tcr alpha chains and correlation with T-cell function. Immunogenetics 35:224–234

    CAS  PubMed  Google Scholar 

  • Wang J, Lim K, Smolyar A, Teng M, Liu J, Tse AG, Hussey RE, Chishti Y, Thomson CT, Sweet RM, Nathenson SG, Chang HC, Sacchettini JC, Reinherz EL (1998) Atomic structure of an alphabeta T cell receptor (TCR) heterodimer in complex with an anti-TCR fab fragment derived from a mitogenic antibody. EMBO J 17:10–26

    Article  PubMed  Google Scholar 

  • Wermenstam NE, Pilstrom L (2001) T-cell antigen receptors in Atlantic cod (Gadus morhua l.): structure, organisation and expression of TCR alpha and beta genes. Dev Comp Immunol 25:117–135

    CAS  PubMed  Google Scholar 

  • Wilson MR, Zhou H, Bengten E, Clem LW, Stuge TB, Warr GW, Miller NW (1998) T-cell receptors in channel catfish: structure and expression of TCR alpha and beta genes [published erratum appears in Mol Immunol 1998 35(18):1219]. Mol Immunol 35:545–557

    CAS  PubMed  Google Scholar 

  • Winoto A, Mjolsness S, Hood L (1985) Genomic organization of the genes encoding mouse T-cell receptor alpha-chain. Nature 316:832–836

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Science Foundation to E.C.M. (MCB-0211785), from the National Institutes of Health to M. Schmale (NS36998) and to P. Walsh (P30 ES 05705), and from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) (22.3/2001-0793) to L.P. The experiments presented here comply with the current laws of the United States and Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Churchill McKinney.

Additional information

M.F. Criscitiello and N.E. Wermenstam contributed equally to this work

Nucleotide sequence data reported here are available in the GenBank database under the accession numbers AJ439464–AJ439499 and AY476721–AY476734.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Criscitiello, M.F., Wermenstam, N.E., Pilström, L. et al. Allelic polymorphism of T-cell receptor constant domains is widespread in fishes. Immunogenetics 55, 818–824 (2004). https://doi.org/10.1007/s00251-004-0652-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-004-0652-7

Keywords

Navigation