Skip to main content
Log in

Estimating the rotation rate in the vacuolar proton-ATPase in native yeast vacuolar membranes

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The rate of rotation of the rotor in the yeast vacuolar proton-ATPase (V-ATPase), relative to the stator or steady parts of the enzyme, is estimated in native vacuolar membrane vesicles from Saccharomyces cerevisiae under standardised conditions. Membrane vesicles are formed spontaneously after exposing purified yeast vacuoles to osmotic shock. The fraction of total ATPase activity originating from the V-ATPase is determined by using the potent and specific inhibitor of the enzyme, concanamycin A. Inorganic phosphate liberated from ATP in the vacuolar membrane vesicle system, during ten min of ATPase activity at 20 °C, is assayed spectrophotometrically for different concanamycin A concentrations. A fit of the quadratic binding equation, assuming a single concanamycin A binding site on a monomeric V-ATPase (our data are incompatible with models assuming multiple binding sites), to the inhibitor titration curve determines the concentration of the enzyme. Combining this with the known ATP/rotation stoichiometry of the V-ATPase and the assayed concentration of inorganic phosphate liberated by the V-ATPase, leads to an average rate of ~10 Hz for full 360° rotation (and a range of 6–32 Hz, considering the ± standard deviation of the enzyme concentration), which, from the time-dependence of the activity, extrapolates to ~14 Hz (8–48 Hz) at the beginning of the reaction. These are lower-limit estimates. To our knowledge, this is the first report of the rotation rate in a V-ATPase that is not subjected to genetic or chemical modification and is not fixed to a solid support; instead it is functioning in its native membrane environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi K, Oiwa K, Nishizaka T et al (2007) Coupling of rotation and catalysis in F-1-ATPase revealed by single-molecule imaging and manipulation. Cell 130:309–321

    Article  CAS  PubMed  Google Scholar 

  • Baars TL, Petri S, Peters C, Mayer A (2007) Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium. Mol Biol Cell 18:3873–3882

    Article  CAS  PubMed  Google Scholar 

  • Beyenbach KW, Wieczorek H (2006) The V-type H+-ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, Ubbink-Kok T, Lolkema JS, Brisson A, Konings WN (1997) Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential to rotational catalysis. Proc Natl Acad Sci USA 94:14291–14293

    Article  CAS  PubMed  Google Scholar 

  • Bohrmann J, Bonafede A (2001) Tissue-specific distribution, variation of the channel-forming protein ductin during development of Drosophila melanogaster (vol 44, pp 884, 2000). Int J Dev Biol 45:U4

    Google Scholar 

  • Bowman EJ, Bowman BJ (2005) V-ATPases as drug targets. J Bioenerg Biomembr 37:431–435

    Article  CAS  PubMed  Google Scholar 

  • Bowman E, Siebers A, Altendorf K (1988) Bafilomycins—a class of inhibitors of membrane ATPases from microorganisms, animal-cells, and plant-cells. Proc Natl Acad Sci USA 85:7972–7976

    Article  CAS  PubMed  Google Scholar 

  • Bowman BJ, McCall ME, Baertsch R, Bowman EJ (2006) A model for the proteolipid ring and bafilomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa. J Biol Chem 281:31885–31893

    Article  CAS  PubMed  Google Scholar 

  • Cipriano DJ, Wang Y, Bond S et al (2008) Structure and regulation of the vacuolar ATPases. Biochim Biophys Acta 1777:599–604

    Article  CAS  PubMed  Google Scholar 

  • Clelland ES, Saleuddin AS (2000) Vacuolar-type ATPase in the accessory boring organ of Nucella lamellosa (Gmelin) (Mollusca: Gastropoda): role in shell penetration. Biol Bull 198:272–283

    Article  CAS  PubMed  Google Scholar 

  • De la Cruz EM, Sweeney HL, Ostap EM (2000) ADP inhibition of myosin V-ATPase activity. Biophys J 79:1524–1529

    Article  Google Scholar 

  • Dixon N, Pali T, Ball S et al (2003) New biophysical probes for structure-activity analyses of vacuolar-H+-ATPase enzymes. Org Biomol Chem 1:4361–4363

    Article  CAS  PubMed  Google Scholar 

  • Dixon N, Pali T, Kee TP, Marsh D (2004) Spin-labelled vacuolar-ATPase inhibitors in lipid membranes. Biochim Biophys Acta 1665:177–183

    Article  CAS  PubMed  Google Scholar 

  • Dixon N, Pali T, Kee TP et al (2008) Interaction of spin-labeled inhibitors of the vacuolar H+-ATPase with the transmembrane Vo-sector. Biophys J 94:506–514

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev OY, Jones PC, Fillingame RH (1999) Structure of the subunit c oligomer in the F1F0 ATP synthase: model derived from solution structure of the monomer and cross-linking in the native ensyme. Proc Natl Acad Sci USA 96:7785–7790

    Article  CAS  PubMed  Google Scholar 

  • Drose S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K (1993) Inhibitory effect of modified bafilomycins and concanamycins on P-type and V-type adenosine-triphosphatases. Biochemistry 32:3902–3906

    Article  CAS  PubMed  Google Scholar 

  • Dunlop J, Jones PC, Finbow ME (1995) Membrane insertion and assembly of ductin—a polytopic channel with dual orientations. EMBO J 14:3609–3616

    CAS  PubMed  Google Scholar 

  • El Far O, Seagar M (2011) A role for V-ATPase subunits in synaptic vesicle fusion? J Neurochem 117:603–612

    PubMed  Google Scholar 

  • Farina C, Gagliardi S (1999) Selective inhibitors of the osteoclast vacuolar proton ATPase as novel bone antiresorptive agents [review]. Drug Discov Today 4:163–172

    Article  CAS  PubMed  Google Scholar 

  • Feniouk BA, Suzuki T, Yoshida M (2007) Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase. J Biol Chem 282:764–772

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SJ (2000) ATP synthase: what dictates the size of a ring? Curr Biol 10:R804–R808

    Article  CAS  PubMed  Google Scholar 

  • Fillingame RH, Jiang W, Dmitriev OY (2000) Coupling H+ transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor. J Exp Biol 203:9–17

    CAS  PubMed  Google Scholar 

  • Finbow ME, Harrison MA (1997) The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem J 324:697–712

    CAS  PubMed  Google Scholar 

  • Finbow ME, John S, Kam E, Apps DK, Pitts JD (1993) Disposition and orientation of ductin (DCCD-reactive vacuolar H+-ATPase subunit) in mammalian membrane complexes. Exp Cell Res 207:261–270

    Article  CAS  PubMed  Google Scholar 

  • Finbow M, Goodwin SF, Meagher L et al (1994) Evidence that the 16-Kda proteolipid (Subunit-c) of the vacuolar H+-ATPase and ductin from gap-junctions are the same polypeptide in Drosophila and Manduca—molecular-cloning of the Vha16 K Gene from Drosophila. J Cell Sci 107:1817–1824

    CAS  PubMed  Google Scholar 

  • Finbow ME, Harrison M, Jones P (1995) Ductin—a proton pump component, a gap junction channel and a neurotransmitter release channel. BioEssays 17:247–255

    Article  CAS  PubMed  Google Scholar 

  • Furuike S, Nakano M, Adachi K, Noji H, Kinosita K, Yokoyama K (2011) Resolving stepping rotation in Thermus thermophilus H+-ATPase/synthase with an essentially drag-free probe. Nat Commun 2:ARTN 233

    Article  CAS  Google Scholar 

  • Futai M, Omote H, Sambongi Y, Wada Y (2000) Synthase (H + ATPase): coupling between catalysis, mechanical work, and proton translocation. Biochim Biophys Acta 1458:276–288

    Article  CAS  PubMed  Google Scholar 

  • Gagliardi S, Rees M, Farina C (1999) Chemistry and structure activity relationships of bafilomycin A(1), a potent and selective inhibitor of the vacuolar H+-ATPase. Curr Med Chem 6:1197–1212

    CAS  PubMed  Google Scholar 

  • Gibson LCD, Cadwallader G, Finbow ME (2002) Evidence that there are two copies of subunit c″ in V-0 complexes in the vacuolar H+-ATPase. Biochem J 366:911–919

    CAS  PubMed  Google Scholar 

  • Grabe M, Wang HY, Oster G (2000) The mechanochemistry of V-ATPase proton pumps. Biophys J 78:2798–2813

    Article  CAS  PubMed  Google Scholar 

  • Hermolin J, Fillingame RH (1989) H+-ATPase activity of Escherichia coli F1F0 is blocked after reaction of dicyclohexylcarbodiimide with a single proteolipid (subunit c) of the F0 complex. J Biol Chem 264:3896–3903

    CAS  PubMed  Google Scholar 

  • Hinton A, Sennoune SR, Bond S et al (2009) Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 284:16400–16408

    Article  CAS  PubMed  Google Scholar 

  • Hirata R, Graham LA, Takatsuki A, Stevens TH, Anraku Y (1997) VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J Biol Chem 272:4795–4803

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Iwamoto-Kihara A, Sun-Wada GH, Okajima T, Wada Y, Futai M (2003) Subunit rotation of vacuolar-type proton pumping ATPase—relative rotation of the G and c subunits. J Biol Chem 278:23714–23719

    Article  CAS  PubMed  Google Scholar 

  • Holzenburg A, Jones PC, Franklin T et al (1993) Evidence for a common structure for a class of membrane channels. Eur J Biochem 213:21–30

    Article  CAS  PubMed  Google Scholar 

  • Hope MJ, Bally MB, Mayer LD, Janoff AS, Cullis PR (1986) Generation of multilamellar and unilamellar phospholipid-vesicles. Chem Phys Lipids 40:89–107

    Article  Google Scholar 

  • Huss M, Ingenhorst G, Konig S et al (2002) Concanamycin a, the specific inhibitor of V-ATPases, binds to the V-o subunit c. J Biol Chem 277:40544–40548

    Article  CAS  PubMed  Google Scholar 

  • Imamura H, Takeda M, Funamoto S, Shimabukuro K, Yoshida M, Yokoyama K (2005) Rotation scheme of V-1-motor is different from that of F-1-motor. Proc Natl Acad Sci USA 102:17929–17933

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Takahashi A, Adachi K et al (2004) Mechanically driven ATP synthesis by F-1-ATPase. Nature 427:465–468

    Article  CAS  PubMed  Google Scholar 

  • Jefferies KC, Cipriano DJ, Forgac M (2008) Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476:33–42

    Article  CAS  PubMed  Google Scholar 

  • Johnson RM, Allen C, Melman SD et al (2010) Identification of inhibitors of vacuolar proton-translocating ATPase pumps in yeast by high-throughput screening flow cytometry. Anal Biochem 398:203–211

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, Stevens TH (2001a) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276:47411–47420

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki-Nishi S, Nish T, Forgac M (2001b) Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Proc Natl Acad Sci USA 98:12397–12402

    Article  CAS  PubMed  Google Scholar 

  • Kohori A, Chiwata R, Hossain MD et al (2011) Torque generation in F-1-ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice. Biophys J 101:188–195

    Article  CAS  PubMed  Google Scholar 

  • Kopecky J, Glaser E, Norling B, Ernster L (1981) Relationship between the binding of dicyclohexylcarbodiimide and the inhibition of H+-translocation in submitochondrial particles. FEBS Lett 131:208–212

    Article  CAS  PubMed  Google Scholar 

  • Kopecky J, Dedina J, Votruba J et al (1982) Stoicheiometry of dicyclohexylcarbodiimide-ATPase interaction in mitochondria. Biochim Biophys Acta 680:80–87

    Article  CAS  PubMed  Google Scholar 

  • Kopecky J, Guerrieri F, Papa S (1983) Interaction of dicyclohexylcarbodiimide with the proton-conducting pathway of mitochondrial H+-ATPase. Eur J Biochem 131:17–24

    Article  CAS  PubMed  Google Scholar 

  • Kota Z, Pali T, Dixon N et al (2008) Incorporation of transmembrane peptides from the vacuolar H(+)-ATPase in phospholipid membranes: spin-label electron paramagnetic resonance and polarized infrared spectroscopy. Biochemistry 47:3937–3949

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lu YD, Qin WX, Li JJ et al (2005) The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 65:6843–6849

    Article  CAS  PubMed  Google Scholar 

  • Lunde CS, Kubo I (2000) Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae. Antimicrob Agents Chemother 44:1943–1953

    Article  CAS  PubMed  Google Scholar 

  • MacLeod KJ, Vasilyeva E, Baleja JD, Forgac M (1998) Mutational analysis of the nucleotide binding sites of the yeast vacuolar proton-translocating ATPase. J Biol Chem 273:150–156

    Article  CAS  PubMed  Google Scholar 

  • Masaike T, Mitome N, Noji H et al (2000) Rotation of F-1-ATPase and the hinge residues of the beta subunit. J Exp Biol 203:1–8

    CAS  PubMed  Google Scholar 

  • McHenry P, Wang WLW, Devitt E et al (2010) Iejimalides A and B inhibit lysosomal vacuolar H+-ATPase (V-ATPase) activity and induce S-phase arrest and apoptosis in MCF-7 cells. J Cell Biochem 109:634–642

    CAS  PubMed  Google Scholar 

  • Morimura T, Fujita K, Akita M, Nagashima M, Satomi A (2008) The proton pump inhibitor inhibits cell growth and induces apoptosis in human hepatoblastoma. Pediatr Surg Int 24:1087–1094

    Article  PubMed  Google Scholar 

  • Nakanishi-Matsui M, Kashiwagi S, Hosokawa H et al (2006) Stochastic high-speed rotation of Escherichia coli ATP synthase F-1 sector—the epsilon subunit-sensitive rotation. J Biol Chem 281:4126–4131

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M (2010) The mechanism of rotating proton pumping ATPases. Biochim Biophys Acta 1797:1343–1352

    Article  CAS  PubMed  Google Scholar 

  • Nakano M, Imamura H, Toei M, Tamakoshi M, Yoshida M, Yokoyama K (2008) ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus. J Biol Chem 283:20789–20796

    Article  CAS  PubMed  Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (H +)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  CAS  PubMed  Google Scholar 

  • Nishio K, Iwamoto-Kihara A, Yamamoto A, Wada Y, Futai M (2002) Subunit rotation of ATP synthase embedded in membranes: a or beta subunit rotation relative to the c subunit ring. Proc Natl Acad Sci USA 99:13448–13452

    Article  CAS  PubMed  Google Scholar 

  • Nishisho T, Hata K, Nakanishi M et al (2011) The a3 isoform vacuolar type H+-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res 9:845–855

    Article  CAS  PubMed  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F-1-ATPase. Nature 386:299–302

    Article  CAS  PubMed  Google Scholar 

  • Noumi T, Beltran C, Nelson H, Nelson N (1991) Mutational analysis of yeast vacuolar H+-ATPase. Proc Natl Acad Sci USA 88:1938–1942

    Article  CAS  PubMed  Google Scholar 

  • Ohsumi Y, Uchida E, Anraku Y (1983) Proton-translocating adenosine-triphosphatase in vacuolar membranes of Saccharomyces cerevisiae. Cell Struct Funct 8:466

    Google Scholar 

  • Okuno D, Iino R, Noji H (2011) Rotation and structure of FoF1-ATP synthase. J Biochem 149:655–664

    Article  CAS  PubMed  Google Scholar 

  • Otero-Rey EM, Somoza-Martin M, Barros-Angueira F, Garcia–Garcia A (2008) Intracellular pH regulation in oral squamous cell carcinoma is mediated by increased V-ATPase activity via over-expression of the ATP6V1C1 gene. Oral Oncol 44:193–199

    Article  CAS  PubMed  Google Scholar 

  • Owegi MA, Carenbauer AL, Wick NM et al (2005) Mutational analysis of the stator subunit E of the yeast V-ATPase. J Biol Chem 280:18393–18402

    Article  CAS  PubMed  Google Scholar 

  • Padilla-Lopez S, Pearce DA (2006) Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole. J Biol Chem 281:10273–10280

    Article  CAS  PubMed  Google Scholar 

  • Pali T, Finbow ME, Holzenburg A, Findlay JBC, Marsh D (1995) Lipid-protein interactions and assembly of the 16-kDa channel polypeptide from Nephrops norvegicus. Studies with spin-label electron spin resonance spectroscopy and electron microscopy. Biochemistry 34:9211–9218

    Article  CAS  PubMed  Google Scholar 

  • Pali T, Finbow ME, Marsh D (1997) Membrane assembly of the 16-kDa V-ATPase proteolipid subunit from spin-lattice relaxation enhancements in spin label ESR. Biophys J 72:TUAM7

    Google Scholar 

  • Pali T, Finbow ME, Marsh D (1999) Membrane assembly of the 16-kDa proteolipid channel from Nephrops norvegicus studied by relaxation enhancements in spin-label ESR. Biochemistry 38:14311–14319

    Article  CAS  PubMed  Google Scholar 

  • Pali T, Dixon N, Kee TP, Marsh D (2004a) Incorporation of the V-ATPase inhibitors concanamycin and indole pentadiene in lipid membranes. Spin-label EPR studies. Biochim Biophys Acta 1663:14–18

    Article  CAS  PubMed  Google Scholar 

  • Pali T, Whyteside G, Dixon N et al (2004b) Interaction of inhibitors of the vacuolar H+-ATPase with the transmembrane V-o-sector. Biochemistry 43:12297–12305

    Article  CAS  PubMed  Google Scholar 

  • Pali T, Finbow ME, Marsh D (2006) A divalent-ion binding site on the 16-kDa proton channel from Nephrops norvegicus-revealed by EPR spectroscopy. Biochim Biophys Acta 1758:206–212

    Article  CAS  PubMed  Google Scholar 

  • Panke O, Rumberg B (1997) Energy and entropy balance of ATP synthesis. Biochim Biophys Acta 1322:183–194

    Article  CAS  Google Scholar 

  • Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JMG, Garcia–Garcia A (2009) V-ATPase inhibitors and implication in cancer treatment. Cancer Treat Rev 35:707–713

    Article  CAS  PubMed  Google Scholar 

  • Powell B, Graham LA, Stevens TH (2000) Molecular characterization of the yeast vacuolar H+-ATPase proton pore. J Biol Chem 275:23654–23660

    Article  CAS  PubMed  Google Scholar 

  • Rondelez Y, Tresset G, Nakashima T et al (2005) Highly coupled ATP synthesis by F-1-ATPase single molecules. Nature 433:773–777

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Schlegel R, Andresson T, Yuge L, Yamamoto M, Yamasaki H (1998) Induction of cell transformation by mutated 16 K vacuolar H+-ATPase (ductin) is accompanied by down-regulation of gap junctional intercellular communication and translocation of connexin 43 in NIH3T3 cells. Oncogene 17:1673–1680

    Article  CAS  PubMed  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Muller DJ (2000) Structural biology—proton-powered turbine of a plant motor. Nature 405:418–419

    Article  CAS  PubMed  Google Scholar 

  • Sekiya M, Hosokawa H, Nakanishi-Matsui M, Al-Shawi MK, Nakamoto RK, Futai M (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F-1 rotation. J Biol Chem 285:42058–42067

    Article  CAS  PubMed  Google Scholar 

  • Serrano R (1978) Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae. Mol Cell Biochem 22:51–63

    Article  CAS  PubMed  Google Scholar 

  • Severs NJ (2007) Freeze-fracture electron microscopy. Nat Protoc 2:547–576

    Article  CAS  PubMed  Google Scholar 

  • Stahlberg H, Muller DJ, Suda K et al (2001) Bacterial Na+-ATP synthase has an undecameric rotor. EMBO Rep 2:229–233

    Article  CAS  PubMed  Google Scholar 

  • Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    Article  CAS  PubMed  Google Scholar 

  • Strasser B, Iwaszkiewicz J, Michielin O, Mayer A (2011) The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles. EMBO J 30:4126–4141

    Article  CAS  PubMed  Google Scholar 

  • Supino R, Petrangolini G, Pratesi G et al (2008) Antimetastatic effect of a small-molecule vacuolar H+-ATPase inhibitor in in vitro and in vivo preclinical studies. J Pharmacol Exp Ther 324:15–22

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Suno-Ikeda C, Shimabukuro K, Yoshida M, Yokoyama K (2009) Mechanism of inhibition of the V-type molecular motor by tributyltin chloride. Biophys J 96:1210–1217

    Article  CAS  PubMed  Google Scholar 

  • Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  • Tsunoda SP, Aggeler R, Yoshida M, Capaldi RA (2001) Rotation of the c subunit oligomer in fully functional F1Fo ATP synthase. Proc Natl Acad Sci USA 98:898–902

    Article  CAS  PubMed  Google Scholar 

  • Ubbink-Kok T, Boekema EJ, van Breemen JF, Brisson A, Konings WN, Lolkema JS (2000) Stator structure and subunit composition of the V(1)/V(0) Na(+)-ATPase of the thermophilic bacterium Caloramator fervidus. J Mol Biol 296:311–321

    Article  CAS  PubMed  Google Scholar 

  • Uchida E, Ohsumi Y, Anraku Y (1985) Purification and properties of H+-translocating, Mg-2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 260:1090–1095

    CAS  PubMed  Google Scholar 

  • Ueno H, Suzuki T, Kinosita K, Yoshida M (2005) ATP-driven stepwise rotation of FOF1,-ATP synthase. Proc Natl Acad Sci USA 102:1333–1338

    Article  CAS  PubMed  Google Scholar 

  • Van Walraven HS, Strotmann H, Schwarz O, Rumberg B (1996) The H+/ATP coupling ratio of the ATP synthase from thiol-modulated chloroplasts and two cyanobacterial strains is four. FEBS Lett 379:309–313

    Article  PubMed  Google Scholar 

  • Wada Y, Sambongi Y, Futai M (2000) Biological nano motor, ATP synthase FoF1: from catalysis to gamma epsilon c(10–12) subunit assembly rotation. Biochim Biophys Acta 1459:499–505

    Article  CAS  PubMed  Google Scholar 

  • Wang YR, Inoue T, Forgac M (2004) TM2 but not TM4 of subunit c″ interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking. J Biol Chem 279:44628–44638

    Article  CAS  PubMed  Google Scholar 

  • Whyteside G, Meek PJ, Ball SK et al (2005) Concanamycin and indolyl pentadieneamide inhibitors of the vacuolar H+-ATPase bind with high affinity to the purified proteolipid subunit of the membrane domain. Biochemistry 44:15024–15031

    Article  CAS  PubMed  Google Scholar 

  • Wilkens S, Vasilyeva E, Forgac M (1999) Structure of the vacuolar ATPase by electron microscopy. J Biol Chem 274:31804–31810

    Article  CAS  PubMed  Google Scholar 

  • Xie P (2009) On chemomechanical coupling of the F(1)-ATPase molecular motor. Biochim Biophys Acta 1787:955–962

    Article  CAS  PubMed  Google Scholar 

  • Yasuda R, Noji H, Kinosita K, Motojima F, Yoshida M (1997) Rotation of the gamma subunit in F-1-ATPase; evidence that ATP synthase is a rotary motor enzyme. J Bioenerg Biomembr 29:207–209

    Article  CAS  PubMed  Google Scholar 

  • Yasuda R, Noji H, Yoshida M, Kinosita K, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F-1-ATPase. Nature 410:898–904

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase—a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ferhan Ayaydin (Cellular Imaging Laboratory, Biological Research Centre Szeged, Hungary) for his help in taking the transmitted light microscopy images of yeast vacuoles. We also thank E. Kónya for excellent technical assistance. Financial support was received from the Hungarian National Science Fund (OTKA K68804 and K101633). D.M. thanks Christian Griesinger and the Department for NMR-based structural biology for financial assistance.

Ethical standards

It is declared that the experiments presented in this manuscript comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Páli.

Additional information

Special Issue: Structure, function, folding and assembly of membrane proteins—Insight from Biophysics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferencz, C., Petrovszki, P., Kóta, Z. et al. Estimating the rotation rate in the vacuolar proton-ATPase in native yeast vacuolar membranes. Eur Biophys J 42, 147–158 (2013). https://doi.org/10.1007/s00249-012-0871-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0871-z

Keywords

Navigation