Skip to main content
Log in

Identification of Nitrite-Reducing Bacteria Using Sequential mRNA Fluorescence In Situ Hybridization and Fluorescence-Assisted Cell Sorting

  • Methods
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nirS, the gene that encodes nitrite reductase, the enzyme responsible for the dissimilatory reduction of nitrite to nitric oxide. Clones for nirS expression were constructed and used to provide proof of concept for the SmRFF method. In addition, cells from pure cultures of Pseudomonas stutzeri and denitrifying activated sludge were hybridized with the HRP probe, and tyramide signal amplification was performed, conferring a strongly fluorescent signal to cells containing nirS mRNA. Flow cytometry-assisted cell sorting was used to detect and physically separate two subgroups from a mixed microbial community: non-fluorescent cells and an enrichment of fluorescent, nitrite-reducing cells. Denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of 16S ribosomal RNA (rRNA) genes were used to compare the fragments amplified from the two sorted subgroups. Sequences from bands isolated from DGGE profiles suggested that the dominant, active nitrite reducers were closely related to Acidovorax BSB421. Furthermore, following mRNA FISH detection of nitrite-reducing bacteria, 16S rRNA FISH was used to detect ammonia-oxidizing and nitrite-oxidizing bacteria on the same activated sludge sample. We believe that the molecular approach described can be useful as a tool to help address the longstanding challenge of linking function to identity in natural and engineered habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403(6770):646–649

    Article  PubMed  CAS  Google Scholar 

  2. Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68(11):5367–5373

    Article  PubMed  CAS  Google Scholar 

  3. Pelz O, Cifuentes LA, Hammer BT, Kelley CA, Coffin RB (1998) Tracing the assimilation of organic compounds using delta C-13 analysis of unique amino acids in the bacterial peptidoglycan cell wall. FEMS Microbiol Ecol 25(3):229–240

    CAS  Google Scholar 

  4. Roslev P, Iversen N (1999) Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Appl Environ Microbiol 65(9):4064–4070

    PubMed  CAS  Google Scholar 

  5. Adamczyk J, Hesselsoe M, Iversen N, Horn M, Lehner A, Nielsen PH, Schloter M, Roslev P, Wagner M (2003) The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 69(11):6875–6887

    Article  PubMed  CAS  Google Scholar 

  6. Ouverney CC, Fuhrman JA (1999) Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65(4):1746–1752

    PubMed  CAS  Google Scholar 

  7. Zumft WG, Dreusch A, Lochelt S, Cuypers H, Friedrich B, Schneider B (1992) Derived amino-acid-sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase. Eur J Biochem 208(1):31–40

    Article  PubMed  CAS  Google Scholar 

  8. Hallin S, Lindgren PE (1999) PCR detection of genes encoding nitrile reductase in denitrifying bacteria. Appl Environ Microbiol 65(4):1652–1657

    PubMed  CAS  Google Scholar 

  9. Braker G, Zhou JZ, Wu LY, Devol AH, Tiedje JM (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities. Appl Environ Microbiol 66(5):2096–2104

    Article  PubMed  CAS  Google Scholar 

  10. Liu XD, Tiquia SM, Holguin G, Wu LY, Nold SC, Devol AH, Luo K, Palumbo AV, Tiedje JM, Zhou JZ (2003) Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the Pacific coast of Mexico. Appl Environ Microbiol 69(6):3549–3560

    Article  PubMed  CAS  Google Scholar 

  11. Goregues CM, Michotey VD, Bonin PC (2005) Molecular, biochemical, and physiological approaches for understanding the ecology of denitrification. Microb Ecol 49(2):198–208

    Article  PubMed  CAS  Google Scholar 

  12. Hoshino T, Yilmaz LS, Noguera DR, Daims H, Wagner M (2008) Quantification of target molecules needed to by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. Appl Environ Microbiol 74(16):5068–5077

    Article  PubMed  CAS  Google Scholar 

  13. Chen H, Ponniah G, Salonen N, Blum P (2004) Culture-independent analysis of fecal enterobacteria in environmental samples by single-cell mRNA profiling. Appl Environ Microbiol 70(8):4432–4439

    Article  PubMed  CAS  Google Scholar 

  14. Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70(9):5426–5433

    Article  PubMed  CAS  Google Scholar 

  15. Bakermans C, Madsen EL (2002) Detection in coal tar waste-contaminated groundwater of mRNA transcripts related to naphthalene dioxygenase by fluorescent in situ hybridization with tyramide signal amplification. J Microbiol Methods 50(1):75–84

    Article  PubMed  CAS  Google Scholar 

  16. Pilhofer M, Pavlekovic M, Lee NM, Ludwig W (2009) Fluorescence in situ hybridization for intracellular localization of nifH mRNA. Syst Appl Microbiol 32:186–192

    Article  PubMed  CAS  Google Scholar 

  17. Smolina I, Lee C, Frank-Kamenetskii M (2007) Detection of low-copy number genomic DNA sequences in individual bacterial cells by using peptide nucleic acid-assisted rolling-circle amplification and fluorescence in situ hybridization. Appl Environ Microbiol 73(7):2324–2328

    Article  PubMed  CAS  Google Scholar 

  18. Hoshino T, Schramm A (2010) Detection of denitrification genes by in situ rolling circle amplification-fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells. Environ Microbiol 12(9):2508–2517

    Article  PubMed  CAS  Google Scholar 

  19. Kawakami S, Kubota K, Imachi H, Yamaguchi T, Harada H, Ohashi A (2010) Detection of single copy genes by two pass tyramide signal amplification fluorescence in situ hybridization (two-pass TSA-FISH) with single oligonucleotide probes. Microbes and Environments 25(1):15–21

    Article  PubMed  Google Scholar 

  20. Moraru C, Lam P, Fuchs BM, Kuypers MMM, Amann R (2010) GeneFISH—an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 12(11):3057–3073

    Article  PubMed  CAS  Google Scholar 

  21. Biegala I, Not F, Vaulot D, Simon N (2003) Quantitative assessment of picoeukaryotes in the natural environment by using taxonspecific oligonucleotide probes in association with tyramide signal amplification-fluorescence in situ hybridization and flow cytometry. Appl Environ Microbiol 69:5519–5529

    Article  PubMed  CAS  Google Scholar 

  22. Lay C, Dore J, Rigottier-Gois L (2007) Separation of bacteria of the Clostridium leptum subgroup from the human colonic microbiota by fluorescence-activated cell sorting or groupspecific PCR using 16S rRNA gene oligonucleotides. FEMS Microbiol Ecol 60:513–520

    Article  PubMed  CAS  Google Scholar 

  23. Lenaerts J, Lappin-Scott HM, Porter J (2007) Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry. Appl Environ Microbiol 73:2020–2023

    Article  PubMed  CAS  Google Scholar 

  24. Miyauchi R, Oki K, Aoi Y, Tsuneda S (2007) Diversity of nitrite reductase genes in ‘Candidatus Accumulibacter phosphatis’-dominated cultures enriched by flow-cytometric sorting. Appl Environ Microbiol 73:5331–5337

    Article  PubMed  CAS  Google Scholar 

  25. Sekar R, Fuchs BM, Amann R, Pernthaler J (2004) Flow sorting of marine bacterioplankton after fluorescence in situ hybridization. Appl Environ Microbiol 70(10):6210–6219

    Article  PubMed  CAS  Google Scholar 

  26. Czechowska K, Johnson DR, van der Meer JR (2008) Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr Opin Microbiol 11:205–212

    Article  PubMed  CAS  Google Scholar 

  27. Manti A, Boi P, Amalfitano S, Puddu A, Papa S (2011) Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification. J Microbiol Methods 87(3):309–315

    Article  PubMed  Google Scholar 

  28. Chen CH, Cho SH, Chiang H-I, Tsai F, Zhang K, Lo Y-H (2011) Specific sorting of single bacterial cells with microfabricated fluorescence-activated cell sorting and tyramide signal amplification fluorescence in situ hybridization. Anal Chem 83(19):7269–7275

    Article  PubMed  CAS  Google Scholar 

  29. Kalyuzhnaya M, Zabinsky R, Bowerman S, Baker DR, Lidstrom ME, Chistoserdova L (2006) Fluorescence in situ hybridization-flow cytometry-cell sorting-based method for separation and enrichment of type I and type II methanotroph populations. Appl Environ Microbiol 72:4293–4301

    Article  PubMed  CAS  Google Scholar 

  30. Jen CJ, Chou CH, Hsu PC, Yu SJ, Chen WE, Lay JJ, Huang CC, Wen FS (2007) Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target. Appl Microbiol Biotechnol 74:1126–1134

    Article  PubMed  CAS  Google Scholar 

  31. Mota C, Head MA, Ridenoure JA, Cheng JJ, de los Reyes FL (2005) Effects of aeration cycles on nitrifying bacterial populations and nitrogen removal in intermittently aerated reactors. Appl Environ Microbiol 71(12):8565–8572

    Article  PubMed  CAS  Google Scholar 

  32. Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49(3):401–417

    Article  PubMed  CAS  Google Scholar 

  33. Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62(6):2156–2162

    PubMed  CAS  Google Scholar 

  34. Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1997) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria (vol 62, pg 2157, 1996). Appl Environ Microbiol 63(2):815

    PubMed  CAS  Google Scholar 

  35. Schramm A, de Beer D, Wagner M, Amann R (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl Environ Microbiol 64(9):3480–3485

    PubMed  CAS  Google Scholar 

  36. de los Reyes FL, Ritter W, Raskin L (1997) Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems. Appl Environ Microbiol 63(3):1107–1117

    PubMed  Google Scholar 

  37. Hung CH, Peccia J, Zilles JL, Noguera DR (2002) Physical enrichment of polyphosphate-accumulating organisms in activated sludge. Water Environment Research 74(4):354–361

    Article  PubMed  CAS  Google Scholar 

  38. Lin CZ, Stahl DA (1995) Taxon-specific probes for the cellulolytic genus Fibrobacter reveal abundant and novel equine-associated populations. Appl Environ Microbiol 61(4):1348–1351

    PubMed  CAS  Google Scholar 

  39. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl Environ Microbiol 59(3):695–700

    PubMed  CAS  Google Scholar 

  40. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent insitu hybridization with ribosomal-RNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14(2):136–143

    Article  PubMed  CAS  Google Scholar 

  41. de Araújo JC, Schneider RP (2008) DGGE with genomic DNA: suitable for detection of numerically important organisms but not for identification of the most abundant organisms. Water Res 42(20):5002–5010

    Article  PubMed  Google Scholar 

  42. Lai WA, Kämpfer P, Arun AP, Shen F-T, Huber B, Rekha PD, Young C-C (2006) Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 56(4):787–791

    Article  PubMed  CAS  Google Scholar 

  43. Kämpfer P, Lodders N, Huber B, Falsen E, Busse H-J (2008) Deinococcus aquatilis sp. nov., isolated from water. Int J Syst Evol Microbiol 58:2803–2806

    Article  PubMed  Google Scholar 

  44. Im W-T, Jung H-M, Ten LN, Kim MK, Bora N, Goodfellow M, Lim S, Jung J, Lee S-T (2008) Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 58(10):2348–2353

    Article  PubMed  CAS  Google Scholar 

  45. Anesti V, McDonald IR, Ramaswamy M, Wade WG, Kelly DP, Wood AP (2005) Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth. Environ Microbiol 7(8):1227–1238

    Article  PubMed  CAS  Google Scholar 

  46. Schulze R, Spring S, Amann R, Huber I, Ludwig W, Schleifer KH, Kampfer P (1999) Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp nov. Syst Appl Microbiol 22(2):205–214

    Article  PubMed  CAS  Google Scholar 

  47. Hwang C, Wu WM, Gentry TJ, Carley J, Carroll SL, Schadt C, Watson D, Jardine PM, Zhou J, Hickey RF, Criddle CS, Fields MW (2006) Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor. Appl Microbiol Biotechnol 71(5):748–760

    Article  PubMed  CAS  Google Scholar 

  48. Mergaert J, Boley A, Cnockaert MC, Muller WR, Swings J (2001) Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor. Syst Appl Microbiol 24(2):303–310

    Article  PubMed  CAS  Google Scholar 

  49. Yan TF, Fields MW, Wu LY, Zu YG, Tiedje JM, Zhou JZ (2003) Molecular diversity and characterization of nitrite reductase gene fragments (nirK and nirS) from nitrate- and uranium-contaminated groundwater. Environ Microbiol 5(1):13–24

    Article  PubMed  CAS  Google Scholar 

  50. Khan ST, Horiba Y, Yamamoto M, Hiraishi A (2002) Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol 68(7):3206–3214

    Article  PubMed  CAS  Google Scholar 

  51. Song BK, Palleroni NJ, Haggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66(8):3446–3453

    Article  PubMed  CAS  Google Scholar 

  52. Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P (2006) Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol 72(4):2637–2643

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Jose Trinidad Ascencio-Ibanez, Larissa Benavente, and Mariana Franco for their assistance with expression cloning; Janet Dow for assistance with flow cytometry; and Eva Johannes for assistance with CLSM. Funding was provided by the National Science Foundation (CBET 0853864).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis L. de los Reyes III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mota, C.R., So, M.J. & de los Reyes, F.L. Identification of Nitrite-Reducing Bacteria Using Sequential mRNA Fluorescence In Situ Hybridization and Fluorescence-Assisted Cell Sorting. Microb Ecol 64, 256–267 (2012). https://doi.org/10.1007/s00248-012-0018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0018-x

Keywords

Navigation