Skip to main content
Log in

Metaproteomics: A New Approach for Studying Functional Microbial Ecology

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In the postgenomic era, there is a clear recognition of the limitations of nucleic acid-based methods for getting information on functions expressed by microbial communities in situ. In this context, the large-scale study of proteins expressed by indigenous microbial communities (metaproteome) should provide information to gain insights into the functioning of the microbial component in ecosystems. Characterization of the metaproteome is expected to provide data linking genetic and functional diversity of microbial communities. Studies on the metaproteome together with those on the metagenome and the metatranscriptome will contribute to progress in our knowledge of microbial communities and their contribution in ecosystem functioning. Effectiveness of the metaproteomic approach will be improved as increasing metagenomic information is made available thanks to the environmental sequencing projects currently running. More specifically, analysis of metaproteome in contrasted environmental situations should allow (1) tracking new functional genes and metabolic pathways and (2) identifying proteins preferentially associated with specific stresses. These proteins considered as functional bioindicators should contribute, in the future, to help policy makers in defining strategies for sustainable management of our environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Amann, RI, Ludwig, W, Schleifer, KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. FEMS Microbiol Rev 59: 143–169

    CAS  Google Scholar 

  2. Anderson, LB, Maderia, M, Ouellette, AJA, Putman-Evans, C, Higgins, L, Krick, T, MacCoss, MJ, Lim, H, Yates, JR III, Barry, BA (2002) Post translational modifications in the CP43 subunit of photosystem II. Proc Natl Acad Sci USA 23: 14676–14681

    Article  Google Scholar 

  3. Bakken, LR (1985) Separation and purification of bacteria from soil. Appl Environ Microbiol 49: 1482–1487

    PubMed  Google Scholar 

  4. Borneman, J (1999) Culture-independent identification of microorganisms that respond to specified stimuli. Appl Environ Microbiol 65: 3398–3400

    PubMed  CAS  Google Scholar 

  5. Brock, TD (1987) The study of microorganisms in situ: progress and problems. Symp Soc Gen Microbiol 41: 1–17

    Google Scholar 

  6. Cash, P, Argo, E, Ford, L, Lawrie, L, McKenzie, H (1999) A proteomic analysis of erythromycin resistance in Streptococcus pneumoniae. Electrophoresis 20: 2259–2268

    Article  PubMed  CAS  Google Scholar 

  7. Courtois, S, Frostegård, Å, Göransson, P, Depret, G, Jeannin, P, Simonet, P (2001) Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ Microbiol 3: 431–439

    Article  PubMed  CAS  Google Scholar 

  8. DeLong, EF (2004) Microbial population genomics and ecology: the road ahead. Environ Microbiol 6: 875–878

    Article  PubMed  Google Scholar 

  9. Ehler, MM, Cloete, TE (1999) Comparing the protein profiles of 21 different activated sludge systems after SDS-PAGE. Wat Res 33: 1181–1186

    Article  Google Scholar 

  10. Espina, V, Woodhouse, EC, Wulkuhle, J, Asmussen, HD, Petricoin, EF III, Liotta, LA (2004) Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods 290: 121–133

    Article  PubMed  CAS  Google Scholar 

  11. Figeys, D (2000) The Achilles’ heel of proteomics. Trends Biotechnol 18: 483

    Article  PubMed  CAS  Google Scholar 

  12. Goodacre, R, Vaidyanathan, S, Dunn, WB, Harrigan, GG, Kell, DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22: 245–252

    Article  PubMed  CAS  Google Scholar 

  13. Goodlett, DR, Yi, EC (2003) Stable isotopic labeling and mass spectrometry as a means to determine differences in protein expression. Trends Anal Chem 22: 282–290

    Article  CAS  Google Scholar 

  14. Guerreiro, N, Djordjevic, MA, Rolfe, BG (1999) Proteome analysis of the model microsymbiont Sinorhizobium meliloti: isolation and characterisation of novel proteins. Electrophoresis 20: 818–825

    Article  PubMed  CAS  Google Scholar 

  15. Gygi, SP, Corthals, GL, Zhang, Y, Rochon, Y, Aebersol, R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 97: 9390–9395

    Article  PubMed  CAS  Google Scholar 

  16. Heim, S, Ferrer, M, Heuer, H, Regenhardt, D, Nimtz, M, Timmis, KN (2003) Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. Environ Microbiol 5: 1257–1269

    Article  PubMed  CAS  Google Scholar 

  17. Hurt, RA, Qiu, X, Wu, L, Roh, Y, Palumbo, AV, Tiedje, JM, Zhou, J (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67: 4495–4503

    Article  PubMed  CAS  Google Scholar 

  18. Kan, J, Hanson, TE, Ginter, JM, Wang, K, Chen, F (2005) Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Systems 1: 7

    Article  PubMed  Google Scholar 

  19. Lee, KH (2001) Proteomics: a technology-driven and technology-limited discovery science. Trends Biotechnol 19: 217–222

    Article  PubMed  CAS  Google Scholar 

  20. Liesack, W, Stackebrandt, E (1992) Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174: 5072–5078

    PubMed  CAS  Google Scholar 

  21. Manchenko, GP (1994) Handbook of Detection of Enzymes on Electroporetic Gels. CRC Press; Boca Raton, FL, pp 300

    Google Scholar 

  22. Mann, M, Pandey, A (2001) Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. Trends Biochem Sci 26: 54–61

    Article  PubMed  CAS  Google Scholar 

  23. Maron, PA, Coeur, C, Pink, C, Clays-Josserand, A, Lensi, R, Richaume, A, Potier, P (2003) Use of polyclonal antibodies to detect and quantify the NOR protein of nitrite oxidizers in complex environments. J Microbiol Methods 53: 87–95

    Article  PubMed  CAS  Google Scholar 

  24. Maron, PA, Richaume, A, Potier, P, Lata, JC, Lensi, R (2004) Immunological method for direct assessment of the functionality of a denitrifying strain of Pseudomonas fluorescens in soil. J Microbiol Methods 58: 13–21

    Article  PubMed  CAS  Google Scholar 

  25. Maron, PA, Schimann, H, Brothier, E, Ranjard, L, Domenach, AM, Lensi, R, Nazaret, S (2006) Evaluation of quantitative and qualitative recovery of bacterial communities from different soil types by density gradient centrifugation. Eur J Soil Biol 42: 65–73

    Article  Google Scholar 

  26. Maron, PA, Mougel, C, Siblot, S, Abbas, H, Lemanceau, P, Ranjard, L Protein extraction and fingerprinting optimization of bacterial communities in natural environment. Micob Ecol (In press)

  27. Mounier, E, Hallet, S, Chèneby, D, Benizri, E, Gruet, Y, Nguyen, C, Piutti, S, Robin, C, Slezack-Deschaumes, S, Martin-Laurent, F, Germon, JC, Philippot, L (2004) Influence of maize mucilage on the diversity and activity of the denitrifying community. Environ Microbiol 6: 301–312

    Article  PubMed  CAS  Google Scholar 

  28. Niimi, M, Cannon, R, Monk, B (1999) Candida albicans pathogenicity: a proteomic perspective. Electrophoresis 20: 2299–2308

    Article  PubMed  CAS  Google Scholar 

  29. O’Farrell, PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021

    PubMed  CAS  Google Scholar 

  30. Ogunseitan, OA (1993) Direct extraction of proteins from environmental samples. J Microbiol Methods 17: 273–281

    Article  CAS  Google Scholar 

  31. Ogunseitan, OA (1996) Protein profile in cultivated and native freshwater microorganisms exposed to chemical environmental pollutants. Microb Ecol 31: 291–304

    Article  PubMed  CAS  Google Scholar 

  32. Ogunseitan, OA (1997) Direct extraction of catalytic proteins from natural microbial communities. J Microbiol Methods 28: 55–63

    Article  CAS  Google Scholar 

  33. Ogunseitan, OA (1998) Protein method for investigating mercuric reductase gene expression in aquatic environments. Appl Environ Microbiol 64: 695–702

    PubMed  CAS  Google Scholar 

  34. Pace, NR, Stahl, DA, Olsen, GJ, Lane, DJ (1985) Analyzing natural microbial populations by rRNA sequences. Am Soc Microbiol News 51: 4–12

    Google Scholar 

  35. Pandey, A, Lewitter, F (1999) Nucleotide sequence databases: a gold mine for biologists. Trends Biochem Sci 24: 276–280

    Article  PubMed  CAS  Google Scholar 

  36. Pandey, A, Mann, M (2000) Proteomics to study genes and genomes. Nature 405: 837–846

    Article  PubMed  CAS  Google Scholar 

  37. Panicker, RC, Huang, X, Yao, SQ (2004) Recent advances in peptide-based microarray technologies. Comb Chem High Throughput Screen 7: 547–556

    PubMed  CAS  Google Scholar 

  38. Pedersen, S, Bloch, PL, Reeh, S, Neidhardt, FC (1978) Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell 14: 179–190

    Article  PubMed  CAS  Google Scholar 

  39. Philippot, L (2002) Denitrifying genes in bacterial and Archeal genomes. Biochim Biophys Acta 1577: 355–376

    PubMed  CAS  Google Scholar 

  40. Pimm, SL (1984) The complexity and the stability of ecosystems. Nature 307: 321–326

    Article  Google Scholar 

  41. Radajewski, S, Ineson, P, Parekh, NR, Murrell, JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403: 646–649

    Article  PubMed  CAS  Google Scholar 

  42. Ram, RJ, VerBerkmoes, NC, Thelen, MP, Tyson, GW, Baker, BJ, Blake, RC II, Shah, M, Hettich, RL, Banfield, JF (2005) Community proteomics of a natural microbial biofilm. Science 308: 1915–1920

    Article  PubMed  CAS  Google Scholar 

  43. Ramachandran, N, Hainsworth, E, Bhullar, B, Eisenstein, S, Rosen, B, Lau, AY, Walter, JC, LaBaer, J (2004) Self-assembling protein microarrays. Science 305: 86–90

    Article  PubMed  CAS  Google Scholar 

  44. Ranjard, L, Poly, F, Nazaret, S (2000) Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res Microbiol 151: 167–177

    Article  PubMed  CAS  Google Scholar 

  45. Rodriguez-Valera, F (2004) Environmental genomics, the big picture. FEMS Microbiol Lett 231: 153–158

    Article  PubMed  CAS  Google Scholar 

  46. Rondon, MR, August, PR, Bettermann, AD, Brady, SF, Grossman, TH, Liles, MR, Loiacono, KA, Lynch, BA, MacNeil, IA, Minor, C, Tiong, CL, Gilman, M, Osburne, MS, Clardy, J, Handelsman, J, Goodman, RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66: 2541–2547

    Article  PubMed  CAS  Google Scholar 

  47. Schulze, WX, Gleixner, G, Kaiser, K, Guggenberger, G, Mann, M, Schulze, ED (2004) A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142: 335–343

    Article  PubMed  Google Scholar 

  48. Singleton, I, Merringto, G, Colvan, S, Delahunty, JS (2003) The potential of soil protein-based methods to indicate metal contamination. Appl Soil Ecol 654: 1–8

    Google Scholar 

  49. Stein, JL, Marsh, TL, Wu, KY, Shizuya, H, DeLong, EF (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol 178: 591–599

    PubMed  CAS  Google Scholar 

  50. Torsvik, VL, Ovreas, L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5: 240–245

    Article  PubMed  CAS  Google Scholar 

  51. Vasseur, C, Labadie, J, Hébraud, M (1999) Differential protein expression by Pseudomonas fragi submitted to various stresses. Electrophoresis 20: 2204–2213

    Article  PubMed  CAS  Google Scholar 

  52. Wackett, LP, Dodge, AG, Ellis, BM (2004) Microbial genomics and the periodic table. Appl Environ Microbiol 70: 647–655

    Article  PubMed  CAS  Google Scholar 

  53. Walker, BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6: 18–23

    Article  Google Scholar 

  54. Wilkins, MR, Sanchez, JC, Gooley, AA, Appel, RD, Humphery-Smith, I, Hochstrasser, DF, Williams, KL (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13: 19–50

    Google Scholar 

  55. Wilmes, P, Bond, PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6: 911–920

    Article  PubMed  CAS  Google Scholar 

  56. Yates, JR 3rd, Speicher, S, Griffin, PR, Hunkapiller, T (1993) Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 214: 397–408

    Article  PubMed  CAS  Google Scholar 

  57. Yates, JR 3rd (2004) Mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct 33: 297–316

    Article  PubMed  CAS  Google Scholar 

  58. Zhou, J, Thompson, DK (2002) Challenges in applying the microarrays to environmental studies. Curr Opin Biotechnol 13: 204–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to K. Klein for helpful comments and correcting the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lemanceau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maron, PA., Ranjard, L., Mougel, C. et al. Metaproteomics: A New Approach for Studying Functional Microbial Ecology. Microb Ecol 53, 486–493 (2007). https://doi.org/10.1007/s00248-006-9196-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9196-8

Keywords

Navigation