Skip to main content
Log in

Modification of primers for GRHPR genotyping: avoiding allele dropout by single nucleotide polymorphisms and homology sequence

  • Symposium Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Mutation of primer site for genotyping by polymerase chain reaction (PCR) may cause allele dropout and other genotyping failures. Primary hyperoxaluria type 2 (PH2) is a rare inherited disease caused by overproduction of endogenous oxalate due to mutations in the glyoxylate/hydroxypyruvate reductase (GRHPR) gene. Here, to avoid allele dropout and primer annealing to multiple sites, and given the discrepancy in intron length between GRHPR gene data, we updated the primers used in the sequence assay of the GRHPR gene. These redesigned primers show potential in reducing detection failure of GRHPR mutations. In addition, we performed a single nucleotide polymorphism (SNP) linkage analysis of the GRHPR gene using direct sequencing with PCR amplification of specific alleles (DS-PASA). Using this technique, we sequenced four common SNPs between intron E and exon 6, which show linkage disequilibrium (LD) consisting of three types of haplotypes, similar to data from the HapMap SNP database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ellard S, Bulman MP, Frayling TM, Allen LI, Dronsfield MJ, Tack CJ, Hattersley AT (1999) Allelic drop-out in exon 2 of the hepatocyte nuclear factor-1alpha gene hinders the identification of mutations in three families with maturity-onset diabetes of the young. Diabetes 48:921–923. doi:10.2337/diabetes.48.4.921

    Article  PubMed  CAS  Google Scholar 

  2. Lam CW, Mak CM (2006) Allele dropout in PCR-based diagnosis of Wilson disease: mechanisms and solutions. Clin Chem 52:517–520. doi:10.1373/clinchem.2005.060491

    Article  PubMed  CAS  Google Scholar 

  3. Ward KJ, Ellard S, Yajnik CS, Frayling TM, Hattersley AT, Venigalla PN, Chandak GR (2006) Allelic drop-out may occur with a primer binding site polymorphism for the commonly used RFLP assay for the -1131T > C polymorphism of the Apolipoprotein AV gene. Lipids Health Dis 5:11. doi:10.1186/1476-511X-5-11

    Article  PubMed  CAS  Google Scholar 

  4. Tester DJ, Cronk LB, Carr JL, Schulz V, Salisbury BA, Judson RS, Ackerman MJ (2006) Allelic dropout in long QT syndrome genetic testing: a possible mechanism underlying false-negative results. Heart Rhythm 3:815–821. doi:10.1016/j.hrthm.2006.03.016

    Article  PubMed  Google Scholar 

  5. Mullins FM, Dietz L, Lay M, Zehnder JL, Ford J, Chun N, Schrijver I (2007) Identification of an intronic single nucleotide polymorphism leading to allele dropout during validation of a CDH1 sequencing assay: implications for designing polymerase chain reaction-based assays. Genet Med 9:752–760

    Article  PubMed  CAS  Google Scholar 

  6. Sommer SS, Cassady JD, Sobell JL, Bottema CD (1989) A novel method for detecting point mutations or polymorphisms and its application to population screening for carriers of phenylketonuria. Mayo Clin Proc 64:1361–1372

    PubMed  CAS  Google Scholar 

  7. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17:2503–2516. doi:10.1093/nar/17.7.2503

    Article  PubMed  CAS  Google Scholar 

  8. Lo YM, Patel P, Newton CR, Markham AF, Fleming KA, Wainscoat JS (1991) Direct haplotype determination by double ARMS: specificity, sensitivity and genetic applications. Nucleic Acids Res 19:3561–3567. doi:10.1093/nar/19.13.3561

    Article  PubMed  CAS  Google Scholar 

  9. Sarkar G, Sommer SS (1991) Haplotyping by double PCR amplification of specific alleles. Biotechniques 10(436):438–440

    Google Scholar 

  10. Rudi H, Gylder KE, Arne Rognli O, Rudi K (2006) Direct haplotype-specific DNA sequencing. Prep Biochem Biotechnol 36:253–257. doi:10.1080/10826060600716687

    Article  PubMed  CAS  Google Scholar 

  11. Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP (1999) The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet 8:2063–2069. doi:10.1093/hmg/8.11.2063

    Article  PubMed  CAS  Google Scholar 

  12. Webster KE, Ferree PM, Holmes RP, Cramer SD (2000) Identification of missense, nonsense, and deletion mutations in the GRHPR gene in patients with primary hyperoxaluria type II (PH2). Hum Genet 107:176–185. doi:10.1007/s004390000351

    Article  PubMed  CAS  Google Scholar 

  13. Lam CW, Yuen YP, Lai CK, Tong SF, Lau LK, Tong KL, Chan YW (2001) Novel mutation in the GRHPR gene in a Chinese patient with primary hyperoxaluria type 2 requiring renal transplantation from a living related donor. Am J Kidney Dis 38:1307–1310. doi:10.1053/ajkd.2001.29229

    Article  PubMed  CAS  Google Scholar 

  14. Cregeen DP, Williams EL, Hulton S, Rumsby G (2003) Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat 22:497. doi:10.1002/humu.9200

    Article  PubMed  CAS  Google Scholar 

  15. Takayama T, Nagata M, Ozono S, Nonomura K, Cramer SD (2007) A novel mutation in the GRHPR gene in a Japanese patient with primary hyperoxaluria type 2. Nephrol Dial Transplant 22:2371–2374. doi:10.1093/ndt/gfm271

    Article  PubMed  CAS  Google Scholar 

  16. Bhat S, Williams EL, Rumsby G (2005) Tissue differences in the expression of mutations and polymorphisms in the GRHPR gene and implications for diagnosis of primary hyperoxaluria type 2. Clin Chem 51:2423–2425. doi:10.1373/clinchem.2005.058305

    Article  PubMed  CAS  Google Scholar 

  17. International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320. doi:10.1038/nature04226

    Article  CAS  Google Scholar 

  18. Koboldt DC, Miller RD, Kwok PY (2006) Distribution of human SNPs and its effect on high-throughput genotyping. Hum Mutat 27:249–254. doi:10.1002/humu.20286

    Article  PubMed  CAS  Google Scholar 

  19. Gimelbrant A, Hutchinson JN, Thompson BR, Chess A (2007) Widespread monoallelic expression on human autosomes. Science 318:1136–1140. doi:10.1126/science.1148910

    Article  PubMed  CAS  Google Scholar 

  20. Giafi CF, Rumsby G (1998) Kinetic analysis and tissue distribution of human d-glycerate dehydrogenase/glyoxylate reductase and its relevance to the diagnosis of primary hyperoxaluria type 2. Ann Clin Biochem 35:104–109

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by a Grant-in-Aid for Scientific Research (C) 20591878 and Young Scientists (B) 19791105 from The Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Takayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takaoka, N., Takayama, T., Miyazaki, M. et al. Modification of primers for GRHPR genotyping: avoiding allele dropout by single nucleotide polymorphisms and homology sequence. Urol Res 36, 297–302 (2008). https://doi.org/10.1007/s00240-008-0159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-008-0159-z

Keywords

Navigation