Skip to main content

Advertisement

Log in

Association of right-to-left shunt with frontal white matter lesions in T2-weighted MR imaging of stroke patients

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Cardiac right-to-left shunt (RLS), mainly due to patent foramen ovale (PFO), is a risk factor for paradoxical embolism and stroke. Results of studies about brain lesions in diffusion-weighted imaging (DWI) in PFO patients were controversial. DWI only detects acute ischemic lesions. We assessed the hypothesis that, in T2-weighted magnetic resonance imaging (T2WI) of stroke patients, RLS is associated with a typical distribution of small white matter lesions.

Materials and methods

In this retrospective case–control study, T2WI images of 162 stroke patients were evaluated. From stroke patients admitted between 1999 and 2003, 81 stroke patients with RLS were identified with contrast-enhanced transcranial Doppler (bubble test). Controls were 81 age-matched stroke patients without RLS (negative bubble test). In T2WI images, small lesions (<2 cm) were categorized depending on their location in subcortical white matter, peritrigonal white matter, deep and paraventricular white matter, and basal ganglia. Additionally, larger territorial infarcts were rated.

Results

In T2WI frontal or predominantly frontal-located subcortical small white matter, lesions are significantly associated with RLS (p < 0.0001, chi-square test). Forty-three patients with RLS (53%) and only 19 control patients (23%) showed this frontal dominance. Odds ratio is 3.7 (95% confidence interval = 1.9–7.1) for having a RLS when T2WI shows this lesion pattern in a stroke patient. No patient of the RLS group and 6% of the control group had parietal dominance. Distribution of small lesions in other locations like basal ganglia or deep white matter showed no significant difference for the groups.

Conclusion

A distribution of mainly frontal subcortical small white matter lesions in T2WI is significantly associated with RLS in stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cabanes L, Mas JL, Cohen A et al (1993) Atrial septal aneurysm and patent foramen ovale as risk factors for cryptogenic stroke in patients less than 55 years of age. A study using transesophageal echocardiography. Stroke 24:1865–1873

    PubMed  CAS  Google Scholar 

  2. Mas JL, Arquizan C, Lamy C et al (2001) Patent Foramen Ovale and Atrial Septal Aneurysm Study Group. Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N Engl J Med 345:1740–46

    Article  PubMed  CAS  Google Scholar 

  3. Di Tullio M, Sacco RL, Gopal A et al (1992) Patent foramen ovale as a risk factor for cryptogenic stroke. Ann Intern Med 117:461–465

    PubMed  Google Scholar 

  4. De Castro S, Cartoni D, Fiorelli M et al (2000) Morphological and functional characteristics of patent foramen ovale and their embolic implications. Stroke 31:2407–2413

    PubMed  Google Scholar 

  5. Handke M, Harloff A, Olschewski M et al (2007) Patent foramen ovale and cryptogenic stroke in older patients. N Engl J Med 357:2262–2268. doi:10.1056/NEJMoa071422

    Article  PubMed  CAS  Google Scholar 

  6. Jauss M, Wessels T, Trittmacher S et al (2006) Embolic lesion pattern in stroke patients with patent foramen ovale compared with patients lacking an embolic source. Stroke 37:2159–2161. doi:10.1161/01.STR.0000231645.22128.ab

    Article  PubMed  Google Scholar 

  7. Bonati LH, Kessel-Schaefer A, Linka AZ et al (2006) Diffusion-weighted imaging in stroke attributable to patent foramen ovale: significance of concomitant atrial septum aneurysm. Stroke 37:2030–2034. doi:10.1161/01.STR.0000231655.52686.ab

    Article  PubMed  Google Scholar 

  8. Santamarina E, González-Alujas MT, Muñoz V et al (2006) Stroke patients with cardiac atrial septal abnormalities: differential infarct patterns on DWI. J Neuroimaging 16:334–340

    PubMed  Google Scholar 

  9. Prabhakaran S, Wright CB, Yoshita M et al (2008) Prevalence and determinants of subclinical brain infarction: the Northern Manhattan Study. Neurology 70:425–430. doi:10.1212/01.wnl.0000277521.66947.e5

    Article  PubMed  CAS  Google Scholar 

  10. Teague SM, Sharma MK (1991) Detection of paradoxical cerebral echo contrast embolization by transcranial Doppler ultrasound. Stroke 22:740–745

    PubMed  CAS  Google Scholar 

  11. Jauss M, Kaps M, Keberle M et al (1994) A comparison of transesophageal echocardiography and transcranial Doppler sonography with contrast medium for detection of patent foramen ovale. Stroke 25:1265–1267

    PubMed  CAS  Google Scholar 

  12. Jauss M, Zanette E (2000) Detection of right-to-left shunt with ultrasound contrast agent and transcranial Doppler sonography. Cerebrovasc Dis 10:490–496. doi:10.1159/000016119

    Article  PubMed  CAS  Google Scholar 

  13. Bokura H, Kobayashi S, Yamaguchi S (1998) Distinguishing silent lacunar infarction from enlarged Virchow-Robin spaces: a magnetic resonance imaging and pathological study. J Neurol 245:116–122. doi:10.1007/s004150050189

    Article  PubMed  CAS  Google Scholar 

  14. Jung DK, Devuyst G, Maeder P et al (2001) Atrial fibrillation with small subcortical infarcts. J Neurol Neurosurg Psychiatry 70:344–349. doi:10.1136/jnnp.70.3.344

    Article  PubMed  CAS  Google Scholar 

  15. Knipp SC, Matatko N, Schlamann M et al (2005) Small ischemic brain lesions after cardiac valve replacement detected by diffusion-weighted magnetic resonance imaging: relation to neurocognitive function. Eur J Cardiothorac Surg 28:88–96. doi:10.1016/j.ejcts.2005.02.043

    Article  PubMed  Google Scholar 

  16. de Leeuw FE, de Groot JC, Achten E et al (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14. doi:10.1136/jnnp.70.1.9

    Article  PubMed  Google Scholar 

  17. Vermeer SE, Koudstaal PJ, Oudkerk M et al (2002) Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 33:21–25. doi:10.1161/hs0102.101629

    Article  PubMed  Google Scholar 

  18. Droste DW, Jekentaite R, Stypmann J et al (2002) Contrast transcranial Doppler ultrasound in the detection of right-to-left shunts: comparison of Echovist-200 and Echovist-300, timing of the Valsalva maneuver, and general recommendations for the performance of the test. Cerebrovasc Dis 13:235–241. doi:10.1159/000057849

    Article  PubMed  Google Scholar 

  19. Droste DW, Kriete JU, Stypmann J et al (1999) Contrast transcranial Doppler ultrasound in the detection of right-to-left shunts: comparison of different procedures and different contrast agents. Stroke 30:1827–1832

    PubMed  CAS  Google Scholar 

  20. Nedeltchev K, Mattle HP (2006) Contrast-enhanced transcranial Doppler ultrasound for diagnosis of patent foramen ovale. Front Neurol Neurosci 21:206–215. doi:10.1159/000092432

    Article  PubMed  Google Scholar 

  21. Belvís R, Leta RG, Martí-Fàbregas J et al (2006) Almost perfect concordance between simultaneous transcranial Doppler and transesophageal echocardiography in the quantification of right-to-left shunts. J Neuroimaging 16:133–138

    Article  PubMed  Google Scholar 

  22. Pearson AC, Labovitz AJ, Tatineni S et al (1991) Superiority of transesophageal echocardiography in detecting cardiac source of embolism in patients with cerebral ischemia of uncertain etiology. J Am Coll Cardiol 17:66–72

    Article  PubMed  CAS  Google Scholar 

  23. Strandberg M, Marttila RJ, Helenius H et al (2002) Transoesophageal echocardiography in selecting patients for anticoagulation after ischemic stroke or transient ischemic attack. J Neurol Neurosurg Psychiatry 73:29–33. doi:10.1136/jnnp.73.1.29

    Article  PubMed  CAS  Google Scholar 

  24. Reynolds HR, Tunick PA, Kronzon I (2003) Role of transesophageal echocardiography in the evaluation of patients with stroke. Curr Opin Cardiol 18:340–345. doi:10.1097/00001573-200309000-00003

    Article  PubMed  Google Scholar 

  25. Kang DW, Chalela JA, Ezzeddine MA et al (2003) Association of ischemic lesion patterns on early diffusion-weighted imaging with TOAST stroke subtypes. Arch Neurol 60:1730–1734. doi:10.1001/archneur.60.12.1730

    Article  PubMed  Google Scholar 

  26. Vermeer SE, Hollander M, van Dijk EJ et al (2003) Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke 34:1126–1129. doi:10.1161/01.STR.0000068408.82115.D2

    Article  PubMed  Google Scholar 

  27. Vermeer SE, Prins ND, den Heijer T et al (2003) Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 348:1215–1222. doi:10.1056/NEJMoa022066

    Article  PubMed  Google Scholar 

  28. Giele JL, Witkamp TD, Mali WP et al (2004) Silent brain infarcts in patients with manifest vascular disease. Stroke 35:742–746. doi:10.1161/01.STR.0000117572.56058.2A

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Alfke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JR., Plötz, BM., Rohr, A. et al. Association of right-to-left shunt with frontal white matter lesions in T2-weighted MR imaging of stroke patients. Neuroradiology 51, 299–304 (2009). https://doi.org/10.1007/s00234-009-0496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-009-0496-9

Keywords

Navigation