Skip to main content
Log in

Molecular Dynamics Simulations of Lipid Membrane Electroporation

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The permeability of cell membranes can be transiently increased following the application of external electric fields. Theoretical approaches such as molecular modeling provide a significant insight into the processes affecting, at the molecular level, the integrity of lipid cell membranes when these are subject to voltage gradients under similar conditions as those used in experiments. This article reports on the progress made so far using such simulations to model membrane—lipid bilayer—electroporation. We first describe the methods devised to perform in silico experiments of membranes subject to nanosecond, megavolt-per-meter pulsed electric fields and of membranes subject to charge imbalance, mimicking therefore the application of low-voltage, long-duration pulses. We show then that, at the molecular level, the two types of pulses produce similar effects: provided the TM voltage these pulses create are higher than a certain threshold, hydrophilic pores stabilized by the membrane lipid headgroups form within the nanosecond time scale across the lipid core. Similarly, when the pulses are switched off, the pores collapse (close) within similar time scales. It is shown that for similar TM voltages applied, both methods induce similar electric field distributions within the membrane core. The cascade of events following the application of the pulses, and taking place at the membrane, is a direct consequence of such an electric field distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abidor IG, Arakelyan VB, Chernomordink LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MR (1979) Electrical breakdown of BLM: main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg 6:37–52

    Article  CAS  Google Scholar 

  • Aksimentiev A, Schulten K (2005) Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88:3745–3761

    Article  PubMed  CAS  Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford

    Google Scholar 

  • Anézo C, Vries AHd, Höltje HD, Tieleman DP, Marrink SJ (2003) Methodological issues in lipid bilayer simulations. J Phys Chem B 107:9424–9433

    Article  Google Scholar 

  • Beebe SJ, Schoenbach KH (2005) Nanosecond pulsed electric fields: a new stimulus to activate intracellular signaling. J Biomed Biotechnol 4:297–300

    Article  Google Scholar 

  • Benz R, Beckers F, Zimmerman U (1979) Reversible electrical breakdown of lipid bilayer membranes—a charge-pulse relaxation study. J Membr Biol 48:181–204

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz ML, Raghavan MJ (1991) Computer simulation of a water/membrane interface. Langmuir 7:1042–1044

    Article  CAS  Google Scholar 

  • Berkowitz ML, Bostick DL, Pandit S (2006) Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. Chem Rev 106(4):1527–1539

    Article  PubMed  CAS  Google Scholar 

  • Bhandarkar M, Brunner R, Chipot C, Dalke A, Dixit S, Grayson P, Gullinsrud J, Gursoy A, Humphrey W, Hurwitz D, Krawetz N, Nelson M, Phillips J, Shinozaki A, Zheng G, Zhu F (2002) NAMD version 2.4. http://wwwksuiucedu/Research/namd

  • Bockmann RA, de Groot BL, Kakorin S, Neumann E, Grubmuller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850

    Article  PubMed  Google Scholar 

  • Bostick D, Berkowitz ML (2003) The implementation of slab geometry for membrane-channel molecular dynamics simulations. Biophys J 85:97–107

    Article  PubMed  CAS  Google Scholar 

  • Cascales JJL, Berendsen HJC, de la Torre JG (1996) Molecular dynamics simulation of water between two charged layers of dipalmitoylphosphatidylserine. J Phys Chem 100:8621–8627

    Article  Google Scholar 

  • Chang DC (1992) Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. In: Guide to electroporation and electrofusion. Academic Press, Orlando, pp 9–27

  • Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14

    Article  PubMed  CAS  Google Scholar 

  • Chimerel C, Movileanu L, Pezeshki S, Winterhalter M, Kleinekathofer U (2008) Transport at the nanoscale: temperature dependence of ion conductance. Eur Biophys J 38:121–125

    Article  PubMed  CAS  Google Scholar 

  • Chipot C, Klein ML, Tarek M (2005) Modeling lipid membranes. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht, pp 929–958

  • Chiu SW, Clark M, Jakobsson E, Subramaniam S, Scott HL (1999) Optimization of hydrocarbon chain interaction parameters: application to the simulation of fluid phase lipid bilayers. J Phys Chem B 103:6323–6327

    Article  CAS  Google Scholar 

  • Chiu SW, Vasudevan S, Jakobsson E, Mashl RJ, Scott HL (2003) Structure of sphingomyelin bilayers: a simulation study. Biophys J 85:3624–3635

    Article  PubMed  CAS  Google Scholar 

  • Crozier PS, Henderson D, Rowley RL, Busath DD (2001) Model channel ion currents in NaCl extended simple point charge water solution with applied-field molecular dynamics. Biophys J 81:3077–3089

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg M, Maliniak A (2008) Molecular dynamics simulations of cardiolipin bilayers. J Phys Chem B 112:11655–11663

    Article  PubMed  CAS  Google Scholar 

  • Damodaran KV, Merz KM (1994) A comparison of DMPC and DLPE-based lipid bilayers. Biophys J 66:1076–1087

    Article  PubMed  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh ewald—an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Delemotte L, Dehez F, Treptow W, Tarek M (2008) Modeling membranes under a transmembrane potential. J Phys Chem B 112:5547–5550

    Article  PubMed  CAS  Google Scholar 

  • Delemotte L, Treptow W, Klein ML, Tarek M (2010) Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys J 99(9):L72–L74

    Article  PubMed  CAS  Google Scholar 

  • Delemotte L, Tarek M, Klein ML, Amaral C, Treptow W (2011) Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proc Natl Acad Sci USA 108(15):6109–6114

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84:2709–2714

    Article  PubMed  CAS  Google Scholar 

  • Eberhard N, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum Press, New York

    Google Scholar 

  • Edholm O (2008) Time and length scales in lipid bilayer simulations. In: Feller SE (ed) Computational modeling of membrane bilayers, vol 60. Current topics in membranes. Elsevier, London, pp 91–110

    Chapter  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Feller SE (2000) Molecular dynamics simulations of lipid bilayers. Curr Opin Colloid Interface Sci 5:217–223

    Article  CAS  Google Scholar 

  • Feller SE (2008) Computational modeling of membrane bilayers, vol 60. current topics in membranes. Elsevier, London

    Google Scholar 

  • Feller SE, Gawrisch K, MacKerell AD (2002) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124:318–326

    Article  PubMed  CAS  Google Scholar 

  • Forrest LR, Sansom MSP (2000) Membrane simulations: bigger and better. Curr Opin Struct Biol 10:174–181

    Article  PubMed  CAS  Google Scholar 

  • Gawrisch K, Ruston D, Zimmerberg J, Parsegian V, Rand R, Fuller N (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J 61:1213–1223

    Article  PubMed  CAS  Google Scholar 

  • Gennis RB (1989) Biomembranes: molecular structure and function. Springer, Heidelberg

    Google Scholar 

  • Gillilan RE, Wood F (1995) Visualization, virtual reality, and animation within the data flow model of computing. Comput Graph 29:55–58

    Article  Google Scholar 

  • Golzio M, Teissie J, Rols M-P (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA 99:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Gurtovenko AA, Vattulainen I (2005) Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J Am Chem Soc 127:17570–17571

    Article  PubMed  CAS  Google Scholar 

  • Gurtovenko AA, Vattulainen I (2008) Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. J Phys Chem B 112:1953–1962

    Article  PubMed  CAS  Google Scholar 

  • Gurtovenko AA, Jamshed Anwar J, Vattulainen I (2010) Defect-mediated trafficking across cell membranes: insights from in silico modeling. Chem Rev 110:6077–6103

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E 71:031914

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) Namd2: greater scalability for parallel molecular dynamics. J Comp Phys 151:283–312

    Article  Google Scholar 

  • Kandasamy SK, Larson RG (2006) Cation and anion transport through hydrophilic pores in lipid bilayers. J Chem Phys 125:074901

    Article  PubMed  Google Scholar 

  • Khalili-Araghi F, Tajkhorshid E, Schulten K (2006) Dynamics of K+ ion conduction through Kv1.2. Biophys J 91:L72–L74

    Article  PubMed  CAS  Google Scholar 

  • Kotnik T, Miklavcic D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J 90(2):480–491

    Article  PubMed  CAS  Google Scholar 

  • Kotnik T, Miklavcic D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric fields—a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45(1):3–16

    Article  CAS  Google Scholar 

  • Kutzner C, Grubmüller H, de Groot BL, Zachariae U (2011) Computational electrophysiology: the molecular dynamics of ion channel permeation and selectivity in atomistic detail. Biophys J 101:809–817

    Article  PubMed  CAS  Google Scholar 

  • Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Lewis TJ (2003) A model for bilayer membrane electroporation based on resultant electromechanical stress. IEEE Trans Dielectr Electr Insul 10:769–777

    Article  CAS  Google Scholar 

  • Li S (2008) Electroporation protocols: preclinical and clinical gene medicine, vol 423. Methods in molecular biology. Humana Press, Totowa

    Google Scholar 

  • Li Z, Venable RM, Rogers LA, Murray D, Pastor RW (2009) Molecular dynamics simulations of PIP2 and PIP3 in lipid bilayers: determination of ring orientation, and the effects of surface roughness on a Poisson-Boltzmann description. Biophys J 97:155–163

    Article  PubMed  CAS  Google Scholar 

  • Liberman YA, Topaly VP (1969) Permeability of biomolecular phospholipid membranes for fat-soluble ions. Biophysics USSR 14:477

    Google Scholar 

  • Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79:426–433

    Article  PubMed  CAS  Google Scholar 

  • Lindahl E, Sansom MSP (2008) Membrane proteins: molecular dynamics simulations. Curr Opin Struct Biol 18:425–431

    Article  PubMed  CAS  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Marrink SJ, Mark AE (2001) Effect of undulations on surface tension in simulated bilayers. J Phys Chem B 105:6122–6127

    Article  CAS  Google Scholar 

  • Marrink SJ, Jähniga F, Berendsen HJ (1996) Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys J 71:632–647

    Article  PubMed  CAS  Google Scholar 

  • Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta Biomembr 1788:149–168

    Article  CAS  Google Scholar 

  • Mashl RJ, Scott HL, Subramaniam S, Jakobsson E (2001) Molecular simulation of dioleylphosphatidylcholine bilayers at differing levels of hydration. Biophys J 81:3005–3015

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay P, Monticelli L, Tieleman DP (2004) Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. Biophys J 86:1601–1609

    Article  PubMed  CAS  Google Scholar 

  • Nickoloff JA (1995) Animal cell electroporation and electrofusion protocols, vol 48. Methods in molecular biology. Humana Press, Totowa

    Book  Google Scholar 

  • Paganin-Gioannia A, Bellarda E, Escoffrea JM, Rols MP, Teissié J, Golzio M (2011) Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci USA 108:10443–10447

    Article  Google Scholar 

  • Pandit SA, Bostick D, Berkowitz ML (2003) Mixed bilayer containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine: lipid complexation, ion binding, and electrostatics. Biophys J 85:3120–3131

    Article  PubMed  CAS  Google Scholar 

  • Patel RY, Balaji PV (2008) Characterization of symmetric and asymmetric lipid bilayers composed of varying concentrations of ganglioside GM1 and DPPC. J Phys Chem B 112:3346–3356

    Article  PubMed  CAS  Google Scholar 

  • Pauly H, Schwan HP (1959) Uber die Impedanz Einer Suspension von Kugelformigen Teilchen mit Einer Schale—Ein Modell fur das Dielektrische Verhalten von Zellsuspensionen und von Proteinlosungen. Z Naturforsch B 14(2):125–131

    Google Scholar 

  • Pucihar G, Kotnik T, Valic B, Miklavcic D (2006) Numerical determination of transmembrane voltage induced on irregularly shaped cells. Ann Biomed Eng 34:642–652

    Article  PubMed  CAS  Google Scholar 

  • Pucihar G, Kotnik T, Miklavcic D, Teissié J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95:2837–2848

    Article  PubMed  CAS  Google Scholar 

  • Rog T, Martinez-Seara H, Munck N, Oresic M, Karttunen M, Vattulainen I (2009) Role of cardiolipins in the inner mitochondrial membrane: insight gained through atom-scale simulations. J Phys Chem B 113:3413–3422

    Article  PubMed  CAS  Google Scholar 

  • Rög T, Murzyn K, Pasenkiewicz-Gierula M (2002) The dynamics of water at the phospholipid bilayer: a molecular dynamics study. Chem Phys Lett 352:323–327

    Article  Google Scholar 

  • Roux B (1997) Influence of the membrane potential on the free energy of an intrinsic protein. Biophys J 73:2980–2989

    Article  PubMed  CAS  Google Scholar 

  • Roux B (2008) The membrane potential and its representation by a constant electric field in computer simulations. Biophys J 95:4205–4216

    Article  PubMed  CAS  Google Scholar 

  • Sachs JN, Crozier PS, Woolf TB (2004) Atomistic simulations of biologically realistic transmembrane potential gradients. J Chem Phys 121:10847–10851

    Article  PubMed  CAS  Google Scholar 

  • Saiz L, Klein ML (2001) Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations. Biophys J 81:204–216

    Article  PubMed  CAS  Google Scholar 

  • Saiz L, Klein ML (2002a) Computer simulation studies of model biological membranes. Acc Chem Res 35:482–489

    Article  PubMed  CAS  Google Scholar 

  • Saiz L, Klein ML (2002b) Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations. J Chem Phys 116:3052–3057

    Article  CAS  Google Scholar 

  • Sotomayor M, Vasquez V, Perozo E, Schulten K (2007) Ion conduction through MscS as determined by electrophysiology and simulation. Biophys J 92:886–902

    Article  PubMed  CAS  Google Scholar 

  • Sundararajan R (2009) Nanosecond electroporation: another look. Mol Biotechnol 41:69–82

    Article  PubMed  CAS  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    Article  PubMed  CAS  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Article  PubMed  Google Scholar 

  • Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270

    Article  PubMed  CAS  Google Scholar 

  • Tieleman DP, Berendsen JHC, Sansom MSP (2001) Voltage-dependent insertion of alamethicin at phospholipid/water and octane water interfaces. Biophys J 80:331–346

    Article  PubMed  CAS  Google Scholar 

  • Tobias DJ (2001) Membrane simulations. In: Becker OH, Roux B, Watanabe M (eds) Computational biochemistry and biophysics. Marcel Dekker, New York

    Google Scholar 

  • Tobias DJ, Tu K, Klein ML (1997) Atomic-scale molecular dynamics simulations of lipid membranes. Curr Opin Colloid Interface Sci 2:15–26

    Article  CAS  Google Scholar 

  • Treptow W, Maigret B, Chipot C, Tarek M (2004) Coupled motions between pore and voltage-sensor domains: a model for Shaker B, a voltage-gated potassium channel. Biophys J 87:2365–2379

    Article  PubMed  CAS  Google Scholar 

  • Treptow W, Tarek M, Klein ML (2009) Initial response of the potassium channel voltage sensor to a transmembrane potential. J Am Chem Soc 131:2107–2110

    Article  PubMed  CAS  Google Scholar 

  • Vacha R, Berkowitz ML, Jungwirth P (2009) Molecular model of a cell plasma membrane with an asymmetric multicomponent composition: water permeation and ion effects. Biophys J 96:4493–4501

    Article  PubMed  CAS  Google Scholar 

  • Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC (2006) Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys Rev E 74:021904

    Article  Google Scholar 

  • Vernier PT, Ziegler MJ (2007) Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J Phys Chem B 111:12993–12996

    Article  PubMed  CAS  Google Scholar 

  • Vernier PT, Ziegler MJ, Sun Y, Chang WV, Gundersen MA, Tieleman DP (2006a) Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. J Am Chem Soc 128:6288–6289

    Article  PubMed  CAS  Google Scholar 

  • Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP (2006b) Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers—in cells and in silico. Phys Biol 3:233–247

    Article  PubMed  CAS  Google Scholar 

  • Vernier PT, Levine ZA, Wu H-S, Joubert V, Ziegler MJ, Mir LM, Tieleman DP (2009) Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS ONE 4:e7966

    Article  PubMed  Google Scholar 

  • Weaver JC (2003) Electroporation of biological membranes from multicellular to nano scales. IEEE Trans Dielectr Electr Insul 10:754–768

    Article  CAS  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • Wiener MC, White SH (1992) Structure of fluid dioleylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Henderson D, Crozier P, Rowley RL, Busath DD (2002) Permeation of ions through a model biological channel: effect of periodic boundary condition and cell size. Mol Phys 100:3011–3019

    Article  CAS  Google Scholar 

  • Zhong Q, Moore PB, Newns DM, Klein ML (1998) Molecular dynamics study of the LS3 voltage-gated ion channel. FEBS Lett 427:267–270

    Article  PubMed  CAS  Google Scholar 

  • Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:13588–13596

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was conducted in the scope of the EBAM European Associated Laboratory (LEA). Simulations were performed using HPC resources from GENCI-CINES (grant 2010-2011 075137). M. T. acknowledges the support of the French Agence Nationale de la Recherche (grant ANR-10_BLAN-916-03-INTCELL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Tarek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delemotte, L., Tarek, M. Molecular Dynamics Simulations of Lipid Membrane Electroporation. J Membrane Biol 245, 531–543 (2012). https://doi.org/10.1007/s00232-012-9434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9434-6

Keywords

Navigation