Skip to main content

Advertisement

Log in

Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Climate change driven ocean acidification and hypercapnia may have a negative impact on fertilization in marine organisms because of the narcotic effect these stressors exert on sperm. In contrast, warmer, less viscous water may have a positive influence on sperm swimming speed and so ocean warming may enhance fertilization. To address questions on future vulnerabilities we examined the interactive effects of near-future ocean warming and ocean acidification/hypercapnia on fertilization in intertidal and shallow subtidal echinoids (Heliocidaris erythrogramma, H. tuberculata, Tripneustes gratilla, Centrostephanus rodgersii), an asteroid (Patiriella regularis) and an abalone (Haliotis coccoradiata). Batches of eggs from multiple females were fertilized by sperm from multiple males in all combinations of three temperature and three \( {\text{pH}}/P_{{{\text{CO}}_{2} }} \) treatments. Experiments were placed in the setting of projected near-future conditions for southeast Australia, an ocean change hot spot. There was no significant effect of warming and acidification on the percentage of fertilization. These results indicate that fertilization in these species is robust to temperature and \( {\text{pH}}/P_{{{\text{CO}}_{2} }} \) fluctuation. This may reflect adaptation to the marked fluctuation in temperature and pH that characterises their shallow water coastal habitats. Efforts to identify potential impacts of ocean change to the life histories of coastal marine invertebrates are best to focus on more vulnerable embryonic and larval stages because of their long time in the water column where seawater chemistry and temperature have a major impact on development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen JD, Pechenik JA (2010) Understanding the effects of low salinity on fertilization success and early development in the sand dollar Echinarachnius parma. Biol Bull 218:189–199

    PubMed  Google Scholar 

  • Andrew NL, Byrne M (2007) Centrostephanus. In: Lawrence JM (ed) The biology and ecology of edible urchins. Elsevier Science, Amsterdam, pp 191–204

    Google Scholar 

  • ASTM (2004) Standard guide for conducting static acute toxicity tests with echinoid embryos. E 1563–98. American Society for Testing and Materials, Philadelphia

  • Baker MC, Tyler PA (2001) Fertilization success in the commercial gastropod Haliotis tuberculata. Mar Ecol Prog Ser 211:205–213

    Article  Google Scholar 

  • Bay S, Burgess R, Nacci D (1993) Status and applications of echinoid (Phylum Echinodermata) toxicity test methods. In: Wayne G, Hughes JS, Lewis MA (eds) Environmental Toxicology and Risk Assessment, ASTM STP 1179. American Society of Testing and Materials, Philadelphia, pp 281–302

    Chapter  Google Scholar 

  • Bingham BL, Bacigalupi M, Johnson LG (1997) Temperature adaptations of embryos from intertidal and subtidal sand dollars (Dendraster excentricus, Eschscholtz). Northw Sci 71:108–114

    Google Scholar 

  • Björk M, Axelsson L, Beer S (2004) Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedish Atlantic coast. Mar Ecol Prog Ser 284:109–116

    Article  Google Scholar 

  • Bolton TF, Havenhand JN (1996) Chemical mediation of sperm activity and longevity in the solitary ascidians Ciona intestinalis and Ascidiella aspersa. Biol Bull 190:329–335

    Article  CAS  Google Scholar 

  • Bookbinder LH, Shick JM (1986) Anaerobic and aerobic energy metabolism in ovaries of the sea urchin Strongylocentrotus droebachiensis. Mar Biol 93:103–110

    Article  CAS  Google Scholar 

  • Brokaw CJ (1990) The sea urchin spermatozoon. BioEssays 12:449–452

    Article  PubMed  CAS  Google Scholar 

  • Byrne M (2010) Impact of climate change stressors on marine invertebrate life histories with a focus on the Mollusca and Echinodermata. In: Yu Y, Henderson-Sellers A (eds) Climate alert: climate change monitoring and strategy. University of Sydney Press, Sydney, pp 142–185

    Google Scholar 

  • Byrne RH, Kump LR, Cantrell KJ (1988) The influence of temperature and pH on trace metal speciation in seawater. Mar Chem 25:163–181

    Article  CAS  Google Scholar 

  • Byrne M, Andrew NL, Worthington DG, Brett PA (1998) The influence of latitude and habitat on reproduction in the sea urchin Centrostephanus rodgersii in New South Wales, Australia. Mar Biol 132:305–318

    Article  Google Scholar 

  • Byrne M, Oakes DJ, Pollak JK, Laginestra E (2008) Toxicity of landfill leachate to sea urchin development with a focus on ammonia. Cell Biol Toxicol 24:503–512

    Article  PubMed  CAS  Google Scholar 

  • Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR (2009) Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc R Soc B 276:1883–1935

    Article  PubMed  Google Scholar 

  • Byrne M, Soars N, Selvakumaraswamy P, Dworjanyn SA, Davis AR (2010a) Sea urchin fertilization in a warm, acidified ocean and high P CO2 ocean across a range of sperm densities. Mar Environ Res 69:234–239

    Article  PubMed  CAS  Google Scholar 

  • Byrne M, Selvakumaraswamy P, Ho MA, Nguyen HD (2010b) Sea urchin development in a global change hot spot, potential for southerly migration of thermotolerant propagules. Deep Sea Res II (in press)

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  PubMed  CAS  Google Scholar 

  • Carr RS, Biedenbach JM, Nipper M (2006) Influence of potentially confounding factors on sea urchin porewater toxicity tests. Arch Environ Contam Toxicol 51:573–579

    Article  PubMed  CAS  Google Scholar 

  • Cherr GN, Shoffner-McGee J, Shenker JM (1990) Methods for assessing fertilization and embryonic/larval development in toxicity tests using the California mussel (Mytilus californianus). Environ Toxicol Chem 9:1137–1145

    CAS  Google Scholar 

  • Chia FS, Bickell LR (1983) Echinodermata. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol 2. Wiley, New York, pp 545–620

    Google Scholar 

  • Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among tropical, temperate, and a polar species. Mar Biol 156:1125–1137

    Article  Google Scholar 

  • Clotteau G, Dubé F (1993) Optimization of fertilization parameters for rearing surf clams (Spisula solidissima). Aquaculture 114:339–353

    Article  Google Scholar 

  • Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11:1304–1315

    Article  PubMed  Google Scholar 

  • Darszon A, Guerrero A, Galindo BE, Nishigaki T, Wood CD (2008) Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility. Int J Dev Biol 52:595–606

    Article  PubMed  CAS  Google Scholar 

  • Desrosiers RR, Désilets J, Dubé F (1996) Early developmental events following fertilization in the giant scallop Placopecten magellanicus. Can J Fish Aquat Sci 53:1382–1392

    Article  Google Scholar 

  • Dinnel PA, Link JM, Stober QJ (1987) Improved methodology for a sea-urchin sperm cell bioassay for marine waters. Arch Environ Contam Toxicol 16:23–32

    Article  PubMed  CAS  Google Scholar 

  • Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294

    Article  CAS  Google Scholar 

  • Dupont S, Ortega-Martínez O, Thorndyke MC (2010) Impact of near future ocean acidification on echinoderms. Ecotoxicology 19:440–462

    Article  CAS  Google Scholar 

  • Edgar GJ (2000) Australian marine life the plants and animals of temperate waters. Reed New Holland, Sydney, p 544

    Google Scholar 

  • Evans KP, Marshall DJ (2005) Male-by-female interactions influence fertilization success and mediate the benefits of polyandry in the sea urchin Heliocidaris erythrogramma. Evolution 59:106–112

    PubMed  Google Scholar 

  • Evans JP, García-González F, Marshall DJ (2007) Sources of genetic and phenotypic variance in fertilization rates and larval traits in a sea urchin. Evolution 61:2832–2838

    Article  PubMed  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. J Mar Sci 65:414–432

    CAS  Google Scholar 

  • Greenwood PJ, Bennett T (1981) Some effects of temperature-salinity combinations on the early development of the sea urchin Parachinus angulosus (Leske). Fertilization. J Exp Mar Biol Ecol 51:119–131

    Article  Google Scholar 

  • Hamdoun A, Epel D (2007) Embryo stability and vulnerability in an always changing world. Proc Nat Acad Sci USA 104:1745–1750

    Article  PubMed  CAS  Google Scholar 

  • Havenhand JN, Schlegel P (2009) Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosci Discuss 6:4573–4586

    Article  Google Scholar 

  • Havenhand JN, Butler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:651–652

    Article  CAS  Google Scholar 

  • Hendriks IE, Duarte CM, Álvarez A (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Est Coast Shelf Sci 86:157–164

    Article  CAS  Google Scholar 

  • Hoenig JM, Heisey DM (2001) The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat 55:19–24

    Article  Google Scholar 

  • Holland LZ, Gould-Somero M, Paul M (1984) Fertilization acid release in Urechis eggs. I. The nature of the acid and the dependence of acid release and egg activation on external pH. Dev Biol 103:337–342

    Article  PubMed  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University press, Cambridge UK

    Google Scholar 

  • Johnson CH, Clapper DL, Winkler MM, Lee HC, Epel D (1983) A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH. Dev Biol 98:493–501

    Article  PubMed  CAS  Google Scholar 

  • Keesing JK (2007) Ecology of Heliocidaris erythrogramma. In: Lawrence JM (ed) Edible sea urchins: biology and ecology. Elsevier Science, Amsterdam, pp 339–351

    Google Scholar 

  • Knutzen J (1981) Effects of decreased pH on marine organisms. Mar Pollut Bull 12:25–29

    Article  CAS  Google Scholar 

  • Kupriyanova EK, Havenhand JN (2005) Effects of temperature on sperm swimming behaviour, respiration and fertilization success in the serpulid polychaete, Galeolaria casepitosa (Annelida: Serpulidae). Invertebr Reprod Dev 48:7–17

    Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early development stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    Article  CAS  Google Scholar 

  • Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169

    Article  Google Scholar 

  • Laegdsgaard P, Byrne M, Anderson DT (1991) Reproduction of sympatric populations of Heliocidaris erythrogramma and H. tuberculata (Echinoidea) in New South Wales. Mar Biol 110:359–374

    Article  Google Scholar 

  • Lee CH, Ryu TK, Choi JW (2004) Effects of water temperature on embryonic development in the northern Pacific asteroid, Asterias amurensis, from the southern coast of Korea. Invertebr Reprod Dev 45:109–116

    CAS  Google Scholar 

  • Lenth RV (2001) Some practical guidelines for effective sample size determination. Am Stat Assoc 55:187–193

    Google Scholar 

  • Lera S, Maccia S, Pellegrini D (2006) Standardizing the methodology of the sperm cell test with Paracentrotus lividus. Environ Monitoring Assess 122:101–109

    Article  CAS  Google Scholar 

  • Levitan DR, Ferrell DL (2006) Selection on gamete recognition proteins depends on sex, density, and genotype frequency. Science 312:269–2667

    Article  CAS  Google Scholar 

  • Levitan DR, Sewell MA, Chia F–S (1991) Kinetics of fertilization in the sea urchin Strongylocentrotus franciscanus: interaction of gamete dilution, age, and contact time. Biol Bull 181:371–378

    Article  Google Scholar 

  • Levitan DR, terHorst CP, Fogarty ND (2007) The risk of polyspermy in three congeneric sea urchins and its implications for gametic incompatability and reproductive isolation. Evolution 61:2009–2016

    Article  Google Scholar 

  • Ling SD, Johnson CR, Ridgway K, Hobday AJ, Haddon M (2009) Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biol 15:719–731

    Article  Google Scholar 

  • Marshall DJ, Evans JP (2007) Context-dependent benefits of polyandry in a marine hermpahrodite. Biol Lett 3:685–688

    Article  PubMed  Google Scholar 

  • McLusky DS, Bryant V, Campbell R (1986) The effects of temperature and salinity on the toxicity of heavy metals to marine and estuarine invertebrates. Oceanogr Mar Biol Ann Rev 24:481–520

    CAS  Google Scholar 

  • Mead KS, Epel D (1995) Beakers versus breakers: how fertilization in the laboratory differs from fertilization in nature. Zygote 3:95–99

    Article  PubMed  CAS  Google Scholar 

  • Mita M, Hino A, Yasumasu I (1984) Effect of temperature on interaction between eggs and spermatozoa of sea urchin. Biol Bull 166:68–77

    Article  Google Scholar 

  • Morita M, Suwa R, Iguchi A, Nakamura M, Shimada K, Sakai K, Suzuki A (2010) Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates. Zygote 18:103–107

    Article  PubMed  CAS  Google Scholar 

  • Morse DE, Duncan H, Hooker N, Morse A (1977) Hydrogen peroxide induces spawning in molluscs, with activation of prostaglandin endoperoxide synthetase. Science 196:298–300

    Article  PubMed  CAS  Google Scholar 

  • O’Conner C, Mulley JC (1977) Temperature effects on periodicity and embryology, with observations on the population genetics, of the aquacultural echinoid Heliocidaris tuberculata. Aquaculture 12:99–114

    Article  Google Scholar 

  • O’Donnell MJ, Todgham AE, Sewell MA, LaTisha MH, Ruggiero K, Fangue NA, Zippay ML, Hofmann GE (2010) Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar Ecol Prog Ser 398:157–171

    Article  CAS  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA (2009) The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Global Change Biol 15:2123–2136

    Article  Google Scholar 

  • Paucellier G, Doree M (1981) Acid release at activation and fertilization of starfish oocytes. Dev Growth Differ 23:287–296

    Article  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy

  • Poloczanska ES, Babcock RC, Butler A, Hobday AJ, Hoegh-Guldberg O, Kunz TJ, Matear R, Milton DA, Okey TA, Richardson AJ (2007) Climate change and Australian marine life. Oceanogr Mar Biol Annu Rev 45:407–478

    Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  CAS  Google Scholar 

  • Przeslawski R, Davis AR, Benkendorff K (2005) Synergies, climate change and the development of rocky shore invertebrates. Glob Change Biol 11:515–522

    Article  Google Scholar 

  • Przeslawski R, Ahyong S, Byrne M, Worheide G, Hutchings P (2008) Beyond corals and fish: the effects of climate change on non-coral benthic invertebrates of tropical reefs. Global Change Biol 14:2773–2795

    Article  Google Scholar 

  • Reuter KE, Lotterhos KE, Crim RN, Thompson CA, Harley CDG (accepted manuscript) Elevated P CO2 increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrous franciscanus. Global Change Biol. doi:10.1111/j.1365-2486.2010.02216.x

  • Riffell JA, Krug PJ, Zimmer RK (2002) Fertilization in the sea: the chemical identity of an abalone sperm attractant. J Exp Biol 205:1439–1450

    PubMed  CAS  Google Scholar 

  • Ringwood AH (1992) Comparative sensitivity of gametes and early developmental stages of a sea urchin species (Echinometra mathaei) and a bivalve species (Isognomon californicum) during metal expostures. Arch Environ Contam Toxicol 22:288–295

    Article  PubMed  CAS  Google Scholar 

  • Ringwood AH, Keppler CJ (2002) Water quality variation and clam growth: is pH really a non-issue in estuaries? Estuaries 25:907–910

    Article  Google Scholar 

  • Riveros A, Zuñiga M, Larrain A, Becerra J (1996) Relationships between fertilization of the Southeastern Pacific sea urchin Arbacia spatuligera and environmental variables in polluted coastal waters. Mar Ecol Prog Ser 134:159–169

    Article  Google Scholar 

  • Rupp JH (1973) Effects of temperature on fertilization and early cleavage of some tropical echinoderms, with emphasis on Echinometra mathaei. Mar Biol 23:183–189

    Article  Google Scholar 

  • Selvakumaraswamy P, Byrne M (2000) Reproduction, spawning and development in 5 ophiuroids from Australia and New Zealand. Invertebr Biol 119:394–402

    Article  Google Scholar 

  • Sewell MA, Young CM (1999) Temperature limits to fertilization and early development in the tropical sea urchin Echinometra lucunter. J Exp Mar Biol Ecol 236:291–305

    Article  Google Scholar 

  • Smith HW, Clowes GHA (1924) The influence of hydrogen ion concentration on the fertilization process in Arbacia, Asterias and Chaetopterus eggs. Biol Bull 47:333–334

    Article  CAS  Google Scholar 

  • Song YP, Suquet M, Quéau I, Lebrun L (2009) Setting of a procedure for experimental fertilization of Pacific oyster (Crassostrea gigas) oocytes. Aquaculture 287:311–314

    Article  Google Scholar 

  • Styan CA, Byrne M, Franke E (2005) Evolution of egg size and sperm resistance in sea stars: large eggs are not fertilised more readily than small eggs in Patiriella (Echinodermata: Asteroidea). Mar Biol 146:235–242

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Underwood AJ (1999) Publication of so-called ‘negative’results in marine ecology. Mar Ecol Prog Ser 191:307–309

    Google Scholar 

  • Ward GE, Brokaw CJ, Garber DL, Vacquier VD (1985) Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J Cell Biol 101P:2324–2329

    Article  Google Scholar 

  • Wong E, Davis AR, Byrne M (2010) Reproduction and early development in Haliotis coccoradiata (Vetigastropoda: Haliotidae). Invertebr Reprod Dev (in press)

  • Wootten JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci USA 105:18848–18853

    Article  Google Scholar 

  • Yamada K, Mihashi K (1998) Temperature-independent period immediately after fertilization in sea urchin eggs. Biol Bull 195:107–111

    Article  Google Scholar 

Download references

Acknowledgments

Research was supported by an Australian Research Council Grant (MB, AD). The reviewers are thanked for helpful comments. This work is contribution 293 from the Institute for Conservation Biology Wollongong and 36 from the Sydney Institute of Marine Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Byrne.

Additional information

Communicated by H. O. Portner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, M., Soars, N.A., Ho, M.A. et al. Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Mar Biol 157, 2061–2069 (2010). https://doi.org/10.1007/s00227-010-1474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1474-9

Keywords

Navigation