Skip to main content
Log in

Trophic diversity of idoteids (Crustacea, Isopoda) inhabiting the Posidonia oceanica litter

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The coexistence of three idoteid species in Posidonia oceanica litter raises the question of trophic diversity and their role in the litter degradation process. Hence, diet composition of Idotea balthica, Idotea hectica and Cleantis prismatica was studied using a combination of gut contents and stable isotopes analysis. Gut content observations indicate that P. oceanica dead leaves are an important part of the ingested food for the three species, although their tissues are constituted of only a small to medium fraction of P. oceanica carbon. Our results also underlined the potential role of these species in the degradation of P. oceanica litter by mechanically fragmenting the litter and by assimilating a small to medium fraction of carbon. Moreover, we showed that there were considerable inter- and intra-specific differences in diet composition. Diet differed between juveniles and adults for I. balthica. Crustaceans are an important food source for adults of I. balthica, while I. hectica indicated a major contribution of algal material. C. prismatica showed an intermediate diet. This trophic diversity is probably one of the factors allowing these species to coexist in the same biotope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. Oecologia 79:30–37

    Article  Google Scholar 

  • Blum LK, Mills AL, Zieman JC, Zieman RT (1988) Abundance of bacteria and fungi in seagrass and mangrove detritus. Mar Ecol Prog Ser 42:73–78

    Article  Google Scholar 

  • Branstrator DK, Cabana G, Mazumder A, Rasmussen JB (2000) Measuring life-history omnivory in the opossum shrimp, Mysis relicta, with stable nitrogen isotopes. Limnol Oceanogr 45(2):463–467

    Article  CAS  Google Scholar 

  • Buia MC, Gambi MC, Zupo V (2000) Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol Mar Mediterr 7:167–190

    Google Scholar 

  • Bunn SE, Loneragan NR, Kempster MA (1995) Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implications for food-web studies using multiple stable isotopes. Limnol Oceanogr 40(3):622–625

    CAS  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2008) Caution on isotopic model use for analyses of consumer diet. Can J Zool 86:438–445. doi:10.1139/Z08-012

    Article  CAS  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Delta N-15 and Delta C-13): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46(2):443–453. doi:10.1111/j.1365-2664.2009.01620.x

    Article  CAS  Google Scholar 

  • Cebrián J, Duarte CM, Marbà N, Enríquez S, Gallegos M, Olesen B (1996) Herbivory on Posidonia oceanica: magnitude and variability in the Spanish Mediterranean. Mar Ecol Prog Ser 130:147–155

    Article  Google Scholar 

  • Charfi-Cheikhrouha F (2000) Description of Idotea hectica (Pallas, 1772) from the Tunisian coast (Isopoda, Valvifera). Crustaceana 73:153–161

    Article  Google Scholar 

  • Cox AS (2004) Dynamique et composition faunistique de la litière et des banquettes de Posidonia oceanica en Baie de Calvi. Étude préliminaire. Master thesis, University of Liège, Belgium, pp 1–38

  • Crawley KR, Hyndes GA, Vanderklift MA (2007) Variation among diets in discrimination of δ13C and δ15N in the amphipod Allorchestes compressa. J Exp Mar Biol Ecol 349:370–377

    Article  CAS  Google Scholar 

  • Dauby P (1989) The stable carbon isotope ratios in benthic food webs of the gulf of Calvi, Corsica. Cont Shelf Res 9:181–195

    Article  Google Scholar 

  • Dauby P (1995) A δ13C study of the feeding habits in four Mediterranean Leptomysis species (Crustacea: Mysidacea). PSZNI Mar Ecol 16:93–102

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Isotopic composition of cellulose from aquatic organisms. Geochim Cosmochim Acta 45(10):1885–1894

    Article  CAS  Google Scholar 

  • Dimech M, Borg JA, Schembri PJ (2006) Motile macroinvertebrate assemblages associated with submerged Posidonia oceanica litter accumulations. Biol Mar Medit 13(4):130–133

    Google Scholar 

  • Dittel AL, Epifanio CE, Fogel ML (2006) Trophic relationships of juvenile blue crabs (Callinectes sapidus) in estuarine habitats. Hydrobiologia 568:379–390. doi:10.1007/s10750-006-0204-2

    Article  Google Scholar 

  • Fenchel T (1970) Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnol Oceanogr 15(1):14–20

    Google Scholar 

  • Fenchel T (1977) The significance of bactivorous protozoa in the microbial community of detrital particles. In: Cairns J (ed) Aquatic microbial communities. Garland Pub Co, New York, pp 529–544

    Google Scholar 

  • Gallmetzer I, Pflugfelder B, Zekely J, Ott JA (2005) Macrofauna diversity in Posidonia oceanica detritus: distribution and diversity of mobile macrofauna in shallow sublittoral accumulations of Posidonia oceanica detritus. Mar Biol 147(2):517–523. doi:10.1007/s00227-005-1594-9

    Article  Google Scholar 

  • Gannes LZ, OBrien DM, delRio CM (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78(4):1271–1276

    Google Scholar 

  • Gorokhova E, Hansson S (1999) An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer. Can J Fish Aquat Sci 56(11):2203–2210

    Article  Google Scholar 

  • Graça MAS, Maltby L, Calow P (1993) Importance of fungi in the diet of Gammarus pulex (L.) and Asellus aquaticus (L.). I feeding strategies. Oecologia 93:139–144

    Google Scholar 

  • Guarino SM, Gambardella C, Ianniruberto M, de Nicola M (1993) Colour polymorphism in Idotea balthica from the Bay of Naples and its ecological significance. J Mar Biol Assoc UK 64:21–33

    Google Scholar 

  • Havelange S, Lepoint G, Dauby P, Bouquegneau JM (1997) Feeding of the Sparid fish Sarpa salpa in a seagrass ecosystem: diet and carbon flux. PSZNI Mar Ecol 18:289–297

    Article  Google Scholar 

  • Holmer M, Duarte CM, Boschker HTS, Barrón C (2004) Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat Microb Ecol 36:227–237

    Article  Google Scholar 

  • Jackson AL, Inger R, Bearhop S, Parnell A (2009) Erroneous behaviour of MixSIR, a recently published Bayesian isotope mixing model: a discussion of Moore & Semmens (2008). Ecol Lett 12(3):E1–E5. doi:10.1111/j.1461-0248.2008.01233.x

    Article  PubMed  Google Scholar 

  • Janssens M (2000) Etude in situ de la production primaire des macroalgues d’une baie méditerranéenne et influences dans le cycle du carbone. Ph.D. thesis, University of Liège, Belgium, pp 1–270

  • Jennings S, Renones O, Morales Nin B, Polunin NVC, Moranta J, Coll J (1997) Spatial variation in the N-15 and C-13 stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: Implications for the study of trophic pathways. Mar Ecol Prog Ser 146:109–116

    Article  Google Scholar 

  • Jormalainen V, Honkanen T, Heikkila N (2001) Feeding preferences and performance of a marine isopod on seaweed hosts: cost of habitat specialization. Mar Ecol Prog Ser 220:219–230

    Article  Google Scholar 

  • Klap VA, Hemminga MA, Boon JJ (2000) Retention of lignin in seagrasses: angiosperms that returned to the sea. Mar Ecol Prog Ser 194:1–11

    Article  CAS  Google Scholar 

  • Lee WL (1966a) Color change and the ecology of the marine isopod Idothea (Pentidotea) montereyensis Maloney, 1933. Ecology 47:930–941

    Article  Google Scholar 

  • Lee WL (1966b) Pigmentation of the marine Isopod Idotea montereyensis. Comp Biochem Phys 18:17–36

    Article  CAS  Google Scholar 

  • Lepoint G, Nyssen F, Gobert S, Dauby P, Bouquegneau JM (2000) Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Mar Biol 136(3):513–518

    Article  CAS  Google Scholar 

  • Lepoint G, Cox AS, Dauby P, Poulicek M, Gobert S (2006) Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter. Mar Biol Res 2(5):355–365. doi:10.1080/17451000600962797

    Article  Google Scholar 

  • Lesutiene J, Gorokhova E, Gasiunaite ZR, Razinkovas A (2007) Isotopic evidence for zooplankton as an important food source for the mysid Paramysis lacustris in the Curonian Lagoon, the south-eastern Baltic Sea. Estuar Coast Shelf Sci 73:73–80. doi:10.1016/j.ecss.2006.12.010

    Article  Google Scholar 

  • Lorenti M, Fresi E (1983a) Vertical zonation of vagile fauna from the foliar stratum of a Posidonia oceanica bed. Isopoda. Rapp Comm int Mer Medit 28(3):143–145

    Google Scholar 

  • Lorenti M, Fresi E (1983b) Grazing of ldotea baltica on Posidonia oceanica: preliminary observations. Rapp Comm Int Mer Medit 28(3):147–148

    Google Scholar 

  • Mateo MA, Romero J (1997) Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar Ecol Prog Ser 151:43–53

    Article  CAS  Google Scholar 

  • Mateo MA, Cebrián J, Dunton K, Mutchler T (2006) Carbon flux in seagrass ecosystems. In: Larkum AWD, Orth JJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, New York, pp 159–192

    Google Scholar 

  • Mazzella L, Buia MC, Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Plant-animal trophic relationships in the Posidonia oceanica ecosystem of the Mediterranean Sea: a review. In: John DM, Hawkins SJ, Price JH (eds) Plant-animal interactions in the marine benthos. The systematics association, vol 46. Clarendon Press, Oxford, pp 165–187

    Google Scholar 

  • McGrath CC, Matthews RA (2000) Cellulase activity in the freshwater amphipod Gammarus lacustris. J N Am Benthol Soc 19:298–307

    Article  Google Scholar 

  • Melville AJ, Connolly RM (2003) Spatial analysis of stable isotope data to determine primary sources of nutrition for fish. Oecologia 136:499–507. doi:10.1007/s00442-003-1302-8

    Article  PubMed  Google Scholar 

  • Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Biol Lett 11:470–480. doi:10.1111/j.1461-0248.2008.01163.x

    Google Scholar 

  • Naylor E (1955) The diet and feeding mechanism of Idotea. J Mar Biol Assoc UK 34:347–355

    Article  Google Scholar 

  • Nicotri ME (1980) Factors involved in herbivore food preference. J Exp Mar Biol Ecol 42:13–26

    Article  Google Scholar 

  • Pasqualini V (1997) Caractérisation des peuplements et types de fonds le long du littoral corse (Méditerranée, France). Ph.D. thesis, Univ Corse, France, pp 1–165

  • Pergent G, Romero J, Pergent-Martini C, Mateo MA, Boudouresque CF (1994) Primary production stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Mar Ecol Prog Ser 106:139–146

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Phillips NW (1984) Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull Mar Sci 35:283–298

    Google Scholar 

  • Pirc H, Wollenweber B (1988) Seasonal changes in nitrogen, free amino acids, and C/N ratios in Mediterranean seagrasses. Mar Ecol 9(2):167–179

    Article  CAS  Google Scholar 

  • Poore GCB, Lew Ton HM (1990) The Holognathidae (Crustacea: Isopoda: Valvifera) expanded and redefined on the basis of body-plan. Invertebr Taxon 4:55–80

    Article  Google Scholar 

  • Prado P, Tomas F, Alcoverro T, Romero J (2007) Extensive direct measurements of Posidonia oceanica defoliation confirm the importance of herbivory in temperate seagrass meadows. Mar Ecol Prog Ser 340:63–71

    Article  Google Scholar 

  • Quan WM, Fu CZ, Jin BS, Luo YQ, Li B, Chen JK, Wu JH (2007) Tidal marshes as energy sources for commercially important nektonic organisms: stable isotope analysis. Mar Ecol Prog Ser 352:89–99. doi:10.3354/meps07160

    Article  Google Scholar 

  • Reñones O, Polunin VC, Goni R (2002) Size related dietary shifts of Epinephelus marginatus in a western Mediterranean littoral ecosystem: an isotope and stomach content analysis. J Fish Biol 61:122–137

    Article  Google Scholar 

  • Salemaa H (1978) Geographic variability in the colour polymorphism of Idotea balthica (Isopoda) in the northern Baltic. Hereditas 88:165–182

    Article  CAS  PubMed  Google Scholar 

  • Salemaa H (1979) Ecology of Idotea spp. (Isopoda) in the northern Baltic. Ophelia 18:133–150

    Google Scholar 

  • Svensson PA, Malm T, Engkvist R (2004) Distribution and host plant preference of Idotea baltica (Pallas) (Crustacea: Isopoda) on shallow rocky shores in the central Baltica Sea. Sarsia 89:1–7

    Article  Google Scholar 

  • Tinturier-Hamelin E (1963) Polychromatisme et determination génétique du sexe chez l’espèce polytypique Idotea balthica (Pallas) (Isopode Valvifère). Cah Biol Mar 4:473–591

    Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182. doi:10.1007/s00442-003-1270-z

    Article  PubMed  Google Scholar 

  • Vela A (2006) Fonctionnement et production primaire des herbiers à Posidonia oceanica (L.) Delile en Méditerranée. Ph.D. thesis, University of Corsica, France, pp 1–126

  • Velimirov B, Ott JA, Novak R (1981) Microorganisms on macrophyte debris: biodegradation and its implication in the food web. Kieler Meeresf Sonderh 5:333–344

    CAS  Google Scholar 

  • Vesakoski O, Merilaita S, Jormalainen V (2008) Reckless males, rational females: dynamic trade-off between food and shelter in the marine isopod Idotea balthica. Behav Process 79:175–181

    Article  Google Scholar 

  • Vizzini S, Sara G, Michener RH, Mazzola A (2002) The role and contribution of the seagrass Posidonia oceanica (L.) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecol 23:277–285

    Article  Google Scholar 

  • Wallerstein BR, Brusca RC (1982) Fish predation: a preliminary study of its role in the zoogeography and evolution of shallow-water idoteid isopods (Crustacea: Isopoda: Idoteidae). J Biogeogr 9:135–150

    Article  Google Scholar 

  • Wittmann K, Scipione MB, Fresi E (1981) Some laboratory experiments on the activity of the macrofauna in the fragmentation of detrital leaves of Posidonia oceanica (L.) Delile. Rapp Comm int Mer Medit 27(2):205–206

    Google Scholar 

  • Yamamuro M (1999) Importance of epiphytic cyanobacteria as food sources for heterotrophs in a tropical seagrass bed. Coral Reefs 18(3):263–271

    Article  Google Scholar 

  • Zimmer M, Bartholmé S (2003) Bacterial endosymbionts in Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) and their contribution to digestion. Limnol Oceanogr 48:2208–2213

    Article  Google Scholar 

  • Zimmer M, Danko JP, Pennings SC, Danford AR, Carefoot TH, Ziegler A, Uglow RF (2002) Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda). Mar Biol 140:1207–1213. doi:10.1007/s00227-002-0800-2

    Article  CAS  Google Scholar 

  • Zimmerman R, Gibson R, Harrington J (1979) Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community. Mar Biol 54:41–47

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of the oceanographic research station STARESO (Calvi, Corsica) for valuable help during field work. We would like to thank A. L. Jackson, R. Inger and A. Parnell for their help in the isotopic model, and two anonymous referees for their helpful comments on the manuscript. We wish to thank Jacqueline Minett for improvement of the English. NS receives a doctoral grant from the Belgian Fund for Research for the Industry and Agriculture (FRIA), and GL is a Research Associate at the Belgian National Science Foundation (FRS-FNRS). This study was also funded by the Belgian National Fund for Scientific Research (FRFC 2.45.69.03). This paper is MARE publication number 177. The authors declare that the experiments performed comply with the current laws of France and Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Sturaro.

Additional information

Communicated by U. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturaro, N., Caut, S., Gobert, S. et al. Trophic diversity of idoteids (Crustacea, Isopoda) inhabiting the Posidonia oceanica litter. Mar Biol 157, 237–247 (2010). https://doi.org/10.1007/s00227-009-1311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1311-1

Keywords

Navigation