Skip to main content

Advertisement

Log in

Endostatin Affects Osteoblast Behavior In Vitro, but Collagen XVIII/Endostatin Is Not Essential for Skeletal Development In Vivo

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Endostatin, a fragment of collagen XVIII, can inhibit vascular endothelial growth factor (VEGF) signaling. VEGF is known to be crucial for bone development. The aims of this study were to investigate the influences of endostatin on osteoblast behavior in vitro and the roles of collagen XVIII/endostatin on bone development in vivo. For the in vitro experiments, MC3T3-E1 osteoblasts were treated with VEGF-A, 2 μg/ml endostatin, 20 μg/ml endostatin, VEGF-A + 2 μg/ml endostatin, or VEGF-A + 20 μg/ml endostatin. Osteoblast proliferation and matrix mineralization were analyzed. Faxitron, pQCT, and histological analyses were performed on hindleg bones of transgenic mice overexpressing endostatin (ES-tg) and mice lacking collagen XVIII (Col18a1 −/−) to study bone development in vivo. Treatment of cells with endostatin decreased osteoblast proliferation. Moreover, VEGF-A together with endostatin (2 μg/ml) decreased osteoblast proliferation and matrix mineralization. In vivo, Col18a1 −/− and ES-tg mice displayed no differences in bone density or mineral content during bone development, but ES-tg bones grew in length more slowly compared to the controls. The formation of secondary ossification centers was delayed in Col18a1 −/− mice. Immunohistochemistry revealed collagen XVIII in basement membranes of periosteal and bone marrow vessels and at muscle attachment sites. In conclusion, endostatin affects osteoblast behavior in vitro, the effects being boosted by simultaneous treatment with VEGF. In vivo, Col18a1 −/− and ES-tg mice show mild delays in bone development. These changes are transitory and suggest that collagen XVIII/endostatin does not play an indispensable role in skeletal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Celik I, Surucu O, Dietz C, Heymach JV, Force J, Hoschele I, Becker CM, Folkman J, Kisker O (2005) Therapeutic efficacy of endostatin exhibits a biphasic dose–response curve. Cancer Res 65:11044–11050

    Article  CAS  PubMed  Google Scholar 

  2. Dhanabal M, Ramchandran R, Waterman MJ, Lu H, Knebelmann B, Segal M, Sukhatme VP (1999) Endostatin induces endothelial cell apoptosis. J Biol Chem 274:11721–11726

    Article  CAS  PubMed  Google Scholar 

  3. Elamaa H, Sormunen R, Rehn M, Soininen R, Pihlajaniemi T (2005) Endostatin overexpression specifically in the lens and skin leads to cataract and ultrastructural alterations in basement membranes. Am J Pathol 166:221–229

    CAS  PubMed  Google Scholar 

  4. Fukai N, Eklund L, Marneros AG, Oh SP, Keene DR, Tamarkin L, Niemela M, Ilves M, Li E, Pihlajaniemi T, Olsen BR (2002) Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J 21:1535–1544

    Article  CAS  PubMed  Google Scholar 

  5. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623–628

    Article  CAS  PubMed  Google Scholar 

  6. Guo D, Jia Q, Song HY, Warren RS, Donner DB (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 270:6729–6733

    Article  CAS  PubMed  Google Scholar 

  7. Hanai J, Gloy J, Karumanchi SA, Kale S, Tang J, Hu G, Chan B, Ramchandran R, Jha V, Sukhatme VP, Sokol S (2002) Endostatin is a potential inhibitor of Wnt signaling. J Cell Biol 158:529–539

    Article  CAS  PubMed  Google Scholar 

  8. Hiltunen MO, Ruuskanen M, Huuskonen J, Mahonen AJ, Ahonen M, Rutanen J, Kosma VM, Mahonen A, Kroger H, Yla-Herttuala S (2003) Adenovirus-mediated VEGF-A gene transfer induces bone formation in vivo. FASEB J 17:1147–1149

    CAS  PubMed  Google Scholar 

  9. Hurskainen M, Eklund L, Hagg PO, Fruttiger M, Sormunen R, Ilves M, Pihlajaniemi T (2005) Abnormal maturation of the retinal vasculature in type XVIII collagen/endostatin deficient mice and changes in retinal glial cells due to lack of collagen types XV and XVIII. FASEB J 19:1564–1566

    CAS  PubMed  Google Scholar 

  10. Kim YM, Hwang S, Kim YM, Pyun BJ, Kim TY, Lee ST, Gho YS, Kwon YG (2002) Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 277:27872–27879

    Article  CAS  PubMed  Google Scholar 

  11. Kitagawa Y, Dai J, Zhang J, Keller JM, Nor J, Yao Z, Keller ET (2005) Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Res 65:10921–10929

    Article  CAS  PubMed  Google Scholar 

  12. Kojima T, Azar DT, Chang JH (2008) Neostatin-7 regulates bFGF-induced corneal lymphangiogenesis. FEBS Lett 582:2515–2520

    Article  CAS  PubMed  Google Scholar 

  13. Kuo CJ, LaMontagne KR Jr, Garcia-Cardena G, Ackley BD, Kalman D, Park S, Christofferson R, Kamihara J, Ding YH, Lo KM, Gillies S, Folkman J, Mulligan RC, Javaherian K (2001) Oligomerization-dependent regulation of motility and morphogenesis by the collagen XVIII NC1/endostatin domain. J Cell Biol 152:1233–1246

    Article  CAS  PubMed  Google Scholar 

  14. Lau KH, Kapur S, Kesavan C, Baylink DJ (2006) Up-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in C57BL/6J osteoblasts as opposed to C3H/HeJ osteoblasts in part contributes to the differential anabolic response to fluid shear. J Biol Chem 281:9576–9588

    Article  CAS  PubMed  Google Scholar 

  15. Leis HJ, Hulla W, Gruber R, Huber E, Zach D, Gleispach H, Windischhofer W (1997) Phenotypic heterogeneity of osteoblast-like MC3T3–E1 cells: changes of bradykinin-induced prostaglandin E2 production during osteoblast maturation. J Bone Miner Res 12:541–551

    Article  CAS  PubMed  Google Scholar 

  16. Macsai CE, Foster BK, Xian CJ (2008) Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair. J Cell Physiol 215:578–587

    Article  CAS  PubMed  Google Scholar 

  17. Maeda T, Kawane T, Horiuchi N (2003) Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology 144:681–692

    Article  CAS  PubMed  Google Scholar 

  18. Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, Carmeliet G (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 111:61–73

    Article  CAS  PubMed  Google Scholar 

  19. Maes C, Stockmans I, Moermans K, Van LR, Smets N, Carmeliet P, Bouillon R, Carmeliet G (2004) Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Invest 113:188–199

    CAS  PubMed  Google Scholar 

  20. Midy V, Plouet J (1994) Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem Biophys Res Commun 199:380–386

    Article  CAS  PubMed  Google Scholar 

  21. Muragaki Y, Timmons S, Griffith CM, Oh SP, Fadel B, Quertermous T, Olsen BR (1995) Mouse Col18a1 is expressed in a tissue-specific manner as three alternative variants and is localized in basement membrane zones. Proc Natl Acad Sci USA 92:8763–8767

    Article  CAS  PubMed  Google Scholar 

  22. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  23. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  CAS  PubMed  Google Scholar 

  24. Orlandini M, Spreafico A, Bardelli M, Rocchigiani M, Salameh A, Nucciotti S, Capperucci C, Frediani B, Oliviero S (2006) Vascular endothelial growth factor-D activates VEGFR-3 expressed in osteoblasts inducing their differentiation. J Biol Chem 281:17961–17967

    Article  CAS  PubMed  Google Scholar 

  25. Pufe T, Petersen WJ, Miosge N, Goldring MB, Mentlein R, Varoga DJ, Tillmann BN (2004) Endostatin/collagen XVIII—an inhibitor of angiogenesis—is expressed in cartilage and fibrocartilage. Matrix Biol 23:267–276

    Article  CAS  PubMed  Google Scholar 

  26. Quelard D, Lavergne E, Hendaoui I, Elamaa H, Tiirola U, Heljasvaara R, Pihlajaniemi T, Clement B, Musso O (2008) A cryptic frizzled module in cell surface collagen 18 inhibits Wnt/beta-catenin signaling. PLoS ONE 3:e1878

    Article  PubMed  Google Scholar 

  27. Quinn TP, Peters KG, De VC, Ferrara N, Williams LT (1993) Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 90:7533–7537

    Article  CAS  PubMed  Google Scholar 

  28. Rehn M, Pihlajaniemi T (1995) Identification of three N-terminal ends of type XVIII collagen chains and tissue-specific differences in the expression of the corresponding transcripts. The longest form contains a novel motif homologous to rat and Drosophila frizzled proteins. J Biol Chem 270:4705–4711

    Article  CAS  PubMed  Google Scholar 

  29. Rehn M, Veikkola T, Kukk-Valdre E, Nakamura H, Ilmonen M, Lombardo C, Pihlajaniemi T, Alitalo K, Vuori K (2001) Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 98:1024–1029

    Article  CAS  PubMed  Google Scholar 

  30. Saarela J, Ylikarppa R, Rehn M, Purmonen S, Pihlajaniemi T (1998) Complete primary structure of two variant forms of human type XVIII collagen and tissue-specific differences in the expression of the corresponding transcripts. Matrix Biol 16:319–328

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt A, Wenzel D, Thorey I, Sasaki T, Hescheler J, Timpl R, Addicks K, Werner S, Fleischmann BK, Bloch W (2006) Endostatin influences endothelial morphology via the activated ERK1/2-kinase endothelial morphology and signal transduction. Microvasc Res 71:152–162

    Article  CAS  PubMed  Google Scholar 

  32. Sipola A, Ilvesaro J, Birr E, Jalovaara P, Pettersson RF, Stenback F, Yla-Herttuala S, Hautala T, Tuukkanen J (2007) Endostatin inhibits endochondral ossification. J Gene Med 9:1057–1064

    Article  CAS  PubMed  Google Scholar 

  33. Sipola A, Nelo K, Hautala T, Ilvesaro J, Tuukkanen J (2006) Endostatin inhibits VEGF-A induced osteoclastic bone resorption in vitro. BMC Musculoskel Disord 7:56

    Article  Google Scholar 

  34. Street J, Bao M, deGuzman L, Bunting S, Peale FV, Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van BN, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99:9656–9661

    Article  CAS  PubMed  Google Scholar 

  35. Tamamura Y, Otani T, Kanatani N, Koyama E, Kitagaki J, Komori T, Yamada Y, Costantini F, Wakisaka S, Pacifici M, Iwamoto M, Enomoto-Iwamoto M (2005) Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 280:19185–19195

    Article  CAS  PubMed  Google Scholar 

  36. Uchida S, Sakai A, Kudo H, Otomo H, Watanuki M, Tanaka M, Nagashima M, Nakamura T (2003) Vascular endothelial growth factor is expressed along with its receptors during the healing process of bone and bone marrow after drill-hole injury in rats. Bone 32:491–501

    Article  CAS  PubMed  Google Scholar 

  37. Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT (1999) Isolation and characterization of MC3T3–E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res 14:893–903

    Article  CAS  PubMed  Google Scholar 

  38. Wickstrom SA, Alitalo K, Keski-Oja J (2002) Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 62:5580–5589

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anna-Maija Ruonala and Jaana Peters for their excellent technical assistance. This work was supported by grants from the Research Council for Health of the Academy of Finland (nos. 115237 and 130795), Sigrid Jusélius Foundation, Emil Aaltonen Foundation, and Graduate School for Musculoskeletal Disorders and Biomaterials, TBGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Tuukkanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipola, A., Seppinen, L., Pihlajaniemi, T. et al. Endostatin Affects Osteoblast Behavior In Vitro, but Collagen XVIII/Endostatin Is Not Essential for Skeletal Development In Vivo. Calcif Tissue Int 85, 412–420 (2009). https://doi.org/10.1007/s00223-009-9287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9287-x

Keywords

Navigation