Skip to main content
Log in

Quantification of Trabecular Bone Structure Using Magnetic Resonance Imaging at 3 Tesla—Calibration Studies Using Microcomputed Tomography as a Standard of Reference

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The purpose of this study is to use high-resolution magnetic resonance (MR) imaging at 3 Tesla (3T) to quantify trabecular bone structure in vitro using femoral head specimens, and to correlate the calculated structure measures with those that were determined using microcomputed tomography (μCT), the standard of reference. Fifteen cylindrical cores were obtained from fresh femoral heads after total hip arthroplasty. MR images were obtained at 3T using a transmit–receive wrist coil. High-resolution coronal images were acquired using a modified three-dimensional (3D) fast-gradient echo sequence. From these data sets two-dimensional (2D) structural parameters analogous to bone histomorphometry were derived by using both mean intercept length (MIL) methods based on the plate model and the more recent model-assumption free 3D distance-transformation (DT) methods. The parameters measured by the 2D plate model-based MIL method and the DT method included apparent (App). BV/TV (bone volume/total volume), App. Tb.Th (trabecular thickness), App. Tb.Sp (trabecular separation), and App. Tb.N (trabecular number). Identical regions of interest were analyzed in the MR images and the μCT data sets, and similar structure measures were derived. The means and standard deviations of the parameters over all slices were calculated and MR-derived measures were correlated with those derived from the μCT data sets using linear regression analyses. Structure measures were overestimated with MRI, for example, the mean App. BV/TV was 0.45 for MRI and 0.20 for μCT, and the slope of the graph was 1.45. App. Tb.Th was overestimated by a factor of 1.9, whereas App. Tb.Sp was underestimated; Tb.N showed the smallest effect. Correlations between the individual parameters were excellent (App. BV/TV, r2= 0.82; App. Tb.Sp, r2 = 0.84; App. Tb.N, r2 = 0.81), except for App.Tb.Th (r2 = 0.67). The results of this study show that trabecular bone structure measures may be obtained using 3T MR imaging. These measures, although higher than the standard of reference, show a highly significant correlation with true structure measures obtained by μCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

  2. (2001) NIH consensus development panel on osteoporosis prevention, diagnosis, and therapy: March 7–29, 2000: highlights of the conferences. South Med J 94:569–573

  3. D Black S Cummings D Karpt et al. (1996) ArticleTitleRandomized trial of alendronate on risk of fracture in women with existing vertebral fractures Lancet 348 1535–1541 Occurrence Handle1:CAS:528:DyaK2sXisFCktQ%3D%3D Occurrence Handle8950879

    CAS  PubMed  Google Scholar 

  4. B Ettinger DM Black BH Mitlak RK Knickerbocker T Nickelsen HK Genant C Christiansen PD Delmas JR Zanchetta J Stakkestad CC Glüer K Krueger FJ Cohen S Eckert KE Ensrud LV Avioli P Lips SR Cummings (1999) ArticleTitleReduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators [see comments] JAMA 282 637–645 Occurrence Handle1:CAS:528:DyaK1MXlvVKqurg%3D Occurrence Handle10517716

    CAS  PubMed  Google Scholar 

  5. ST Harris NB Watts HK Genant CD McKeever T Hangartner M Keller CH Chesnut Suffix3rd J Brown EF Eriksen MS Hoseyni DW Axelrod PD Miller (1999) ArticleTitleEffects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group JAMA 282 1344–1352 Occurrence Handle1:CAS:528:DyaK1MXmvFansr0%3D Occurrence Handle10527181

    CAS  PubMed  Google Scholar 

  6. CH Chesnut Suffix3rd S Silverman K Andriano H Genant A Gimona S Harris D Kiel M LeBoff M Maricic P Miller C Moniz M Peacock P Richardson N Watts D Baylink (2000) ArticleTitleA randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group Am J Med 109 267–276 Occurrence Handle1:CAS:528:DC%2BD3cXms1Wku70%3D Occurrence Handle10996576

    CAS  PubMed  Google Scholar 

  7. S Sarkar BH Mitlak M Wang et al. (2002) ArticleTitleRelationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy J Bone Miner Res 17 1–10 Occurrence Handle1:CAS:528:DC%2BD38XktFyisg%3D%3D Occurrence Handle11771654

    CAS  PubMed  Google Scholar 

  8. RS Siffert GM Luo SC Cowin JJ Kaufman (1996) ArticleTitleDynamic relationships of trabecular bone density, architecture, and strength in a computational model of of osteopenia Bone 18 197–206 Occurrence Handle1:STN:280:DyaK28vjtVSltw%3D%3D Occurrence Handle8833215

    CAS  PubMed  Google Scholar 

  9. S Majumdar M Kothari P Augat DC Newitt TM Link JC Lin T Lang Y Lu HK Genant (1998) ArticleTitleHigh-resolution magnetic resonance imaging: three- dimensional trabecular bone architecture and biomechanical properties Bone 22 445–454 Occurrence Handle1:STN:280:DyaK1c3mtFCjtg%3D%3D Occurrence Handle9600777

    CAS  PubMed  Google Scholar 

  10. D Ulrich B van Rietbergen A Laib P Reuegsegger (1999) ArticleTitleThe ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone Bone 25 55–60 Occurrence Handle1:STN:280:DyaK1MzkvFyrtw%3D%3D Occurrence Handle10423022

    CAS  PubMed  Google Scholar 

  11. RR Recker (1983) Bone histomorphometry: techniques and interpretation CRC Press Boca Raton, FL

    Google Scholar 

  12. P Reugsegger B Koller R Muller (1996) ArticleTitleA microtomographic system for the nondestructive evaluation of bone architecture Calcif Tissue Int 58 24–29

    Google Scholar 

  13. D Ulrich B Rietbergen ParticleVan A Laib P Ruegsegger (1999) ArticleTitleThe ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone Bone 25 55–60 Occurrence Handle1:STN:280:DyaK1MzkvFyrtw%3D%3D Occurrence Handle10423022

    CAS  PubMed  Google Scholar 

  14. R Müller B Koller T Hildebrand A Laib S Gianolini P Rüegsegger (1996) ArticleTitleResolution dependency of microstructural properties of cancellous bone based on three-dimensional mu-tomography Technol Health Care 4 113–119 Occurrence Handle8773313

    PubMed  Google Scholar 

  15. V Patel AS Issever A Burghardt A Laib M Ries S Majumdar (2003) ArticleTitleMicroCT Evaluation of normal and osteoarthritic bone structure in human knee specimens J Orthop Res 21 6–13 Occurrence Handle12507574

    PubMed  Google Scholar 

  16. A Laib O Barou L Vico MH Lafage- Proust C Alexandre P Rügsegger (2000) ArticleTitle3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis Med Biol Eng Comput 38 326–332 Occurrence Handle1:STN:280:DC%2BD3czovValsg%3D%3D Occurrence Handle10912350

    CAS  PubMed  Google Scholar 

  17. A Laib P Ruegsegger (1999) ArticleTitleCalibration of trabecular bone structure measurements of an in vivo 3D-QCT with a 28 μm microCT Bone 24 35–39 Occurrence Handle1:STN:280:DyaK1M7htlyhsg%3D%3D Occurrence Handle9916782

    CAS  PubMed  Google Scholar 

  18. A Laib P Rüegsegger (1999) ArticleTitleCalibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-micron-resolution microcomputed tomography Bone 24 35–39 Occurrence Handle1:STN:280:DyaK1M7htlyhsg%3D%3D Occurrence Handle9916782

    CAS  PubMed  Google Scholar 

  19. A Laib HJ Hauselmann P Ruegsegger (1998) ArticleTitleIn vivo high resolution 3D-QCT of the human forearm Technol Health Care 6 329–339 Occurrence Handle1:STN:280:DyaK1M7pvFSgtw%3D%3D Occurrence Handle10100936

    CAS  PubMed  Google Scholar 

  20. JL Kuhn SA Goldstein LA Feldkamp et al. (1990) ArticleTitleEvaluation of a microcomputed tomography system to study trabecular bone structure J Orthop Res 8 833–842 Occurrence Handle1:STN:280:DyaK3M%2FhtFyhtg%3D%3D Occurrence Handle2213340

    CAS  PubMed  Google Scholar 

  21. T Dufresne (1998) ArticleTitleSegmentation techniques for analysis of bone by three-dimensional computed tomographic imaging Technol Health Care 6 351–359 Occurrence Handle1:STN:280:DyaK1M7pvFSgtQ%3D%3D Occurrence Handle10100938

    CAS  PubMed  Google Scholar 

  22. O Barou D Valentin L Vico C Tirode A Barbier C Alexandre MH Lafage-Proust (2002) ArticleTitleHigh-resolution three-dimensional micro-computed tomography detects bone loss and changes in trabecular architecture early: comparison with DEXA and bone histomorphometry in a rat model of disuse osteoporosis Invest Radiol 37 40–46 Occurrence Handle11753153

    PubMed  Google Scholar 

  23. BP Halloran VL Ferguson SJ Simske A Burghardt LL Venton S Majumdar (2002) ArticleTitleChanges in bone structure and mass with advancing age in the male C57BL/6J mouse J Bone Miner Res 17 1044–1050 Occurrence Handle12054159

    PubMed  Google Scholar 

  24. M Takahashi FW Wehrli SL Wehrli et al. (1999) ArticleTitleEffect of prostaglandin and bisphosphonate on cancellous bone volume and structure in the avariectomized rat studied by quantiative 3D NMR microscopy J Bone Miner Res 14 680–689 Occurrence Handle1:CAS:528:DyaK1MXjtFKrtr4%3D Occurrence Handle10320516

    CAS  PubMed  Google Scholar 

  25. CL Gordon CE Webber N Christoforou C Nahmias (1997) ArticleTitleIn vivo assessment of trabecular bone structure at the distal radius from high-resolution magnetic resonance images Med Phys 24 585–593 Occurrence Handle1:STN:280:DyaK2s3nt1KjtA%3D%3D Occurrence Handle9127312

    CAS  PubMed  Google Scholar 

  26. J Ma FW Wehrli HK Song (1996) ArticleTitleFast 3D large-angle spin-echo imaging 3D FLASE Magn Reson Med 35 903–910 Occurrence Handle1:STN:280:DyaK28zjvVOhtw%3D%3D Occurrence Handle8744019

    CAS  PubMed  Google Scholar 

  27. HW Chung FW Wehrli JL Williams SL Wehrli (1995) ArticleTitleThree-dimensional nuclear magnetic resonance microimaging of trabecular bone J Bone Miner Res 10 1452–1461 Occurrence Handle1:STN:280:DyaK287hsF2ksA%3D%3D Occurrence Handle8686500

    CAS  PubMed  Google Scholar 

  28. S Majumdar DC Newitt A Mathur D Osman A Gies E Chiu J Lots J Kinney H Genant (1996) ArticleTitleMagnetic resonance imaging of trabecular bone structure at the distal radius: relationship with X-ray tomographic microscopy and biomechanics Osteoporos Int 6 376–385 Occurrence Handle1:STN:280:DyaK2s%2FosVKqug%3D%3D Occurrence Handle8931032

    CAS  PubMed  Google Scholar 

  29. S Majumdar TM Link P Augat JC Lin D Newitt NE Lane HK Genant (1999) ArticleTitleTrabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur Osteoporos Int 10 231–239 Occurrence Handle1:STN:280:DC%2BD3c7ht1KqsA%3D%3D Occurrence Handle10525716

    CAS  PubMed  Google Scholar 

  30. DA Nelson M Kleerekoper AM Parfitt (1988) ArticleTitleBone mass, skin color, and body size among black and white women Bone Miner 4 257–264 Occurrence Handle1:STN:280:DyaL1M%2FltFaksw%3D%3D Occurrence Handle3191283

    CAS  PubMed  Google Scholar 

  31. AM Parfitt MK Drezner FH Glorieux et al. (1987) ArticleTitleBone histomorphometry: standardization of nomenclature, symbols and units: Report of the ASBMR histomorphometry nomenclature committee J Bone Miner Res 2 595–610 Occurrence Handle1:STN:280:DyaL1czjvVemsQ%3D%3D Occurrence Handle3455637

    CAS  PubMed  Google Scholar 

  32. S Majumdar D Newitt A Mathur D Osman A Gies E Chiu J Lotz J Kinney H Genant (1996) ArticleTitleMagnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics Osteoporos Int 6 376–385 Occurrence Handle1:STN:280:DyaK2s%2FosVKqug%3D%3D Occurrence Handle8931032

    CAS  PubMed  Google Scholar 

  33. S Majumdar M Kothari P Augat et al. (1998) ArticleTitleHigh-resolution magnetic resonance imaging: Three-dimensional trabecular bone architecture and biomechanical properties Bone 22 445–454 Occurrence Handle1:STN:280:DyaK1c3mtFCjtg%3D%3D Occurrence Handle9600777

    CAS  PubMed  Google Scholar 

  34. JC Lin M Amling DC Newitt K Selby SK Srivastav G Delling HK Genant S Majumdar (1998) ArticleTitleHeterogeneity of trabecular bone structure in the calcaneus using magnetic resonance imaging Osteoporos Int 8 16–24 Occurrence Handle1:STN:280:DyaK1czlslWjsA%3D%3D Occurrence Handle9692073

    CAS  PubMed  Google Scholar 

  35. Beuf O, Ghosh S, Newitt DC, Link TM, Steinbach L, Reis M, Lane N, Majumdar, S (2000) Characterization of trabecular bone micro-architecture in the knee in osteoarthrosis using high-resolution MRI. In: Proceedings of the 8th Annual Meeting of the ISMRM. Denver, CO, p 2135

  36. T Link S Majumdar P Augat et al. (1998) ArticleTitleIn vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients J Bone Miner Res 13 1175–1182 Occurrence Handle1:STN:280:DyaK1czisFGhsQ%3D%3D Occurrence Handle9661082

    CAS  PubMed  Google Scholar 

  37. V Vieth T Link A Letter T Persigehl D Newitt W Heindel S Majumdar (2001) ArticleTitleDoes the trabecular bone structure depicted by high-resolution MRI of the calcaneus reflect the true bone structure? Inves Radiol 36 210–217 Occurrence Handle1:STN:280:DC%2BD3Mzgs1Orug%3D%3D

    CAS  Google Scholar 

  38. T Hildebrand P Ruegsegger (1997) ArticleTitleA new method for the model-independent assessment of thickness in three-dimensional images J Microsc 185 67–75

    Google Scholar 

  39. A Laib O Beuf A Issever DC Newitt S Majumdar (2001) ArticleTitleDirect measures of trabecular bone architecture from MR images Adv Exp Med Biol 496 37–46 Occurrence Handle1:STN:280:DC%2BD38%2FlvVehsw%3D%3D Occurrence Handle11783624

    CAS  PubMed  Google Scholar 

  40. A Laib DC Newitt Y Lu S Majumdar (2002) ArticleTitleNew model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images Osteoporos Int 13 130–136 Occurrence Handle1:STN:280:DC%2BD387ntlagtw%3D%3D Occurrence Handle11905523

    CAS  PubMed  Google Scholar 

  41. S Majumdar D Newitt M Jergas A Gies E Chiu D Osman J Keltner J Keyak H Genant (1995) ArticleTitleEvaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging Bone 17 417–430 Occurrence Handle1:STN:280:DyaK287itVCrsA%3D%3D Occurrence Handle8573417

    CAS  PubMed  Google Scholar 

  42. M Kothari TM Keaveny JC Lin D Newitt H Genant S Majumdar (1998) ArticleTitleImpact of spatial resolution on the prediction of trabecular architecture parameters Bone 22 437–443 Occurrence Handle1:STN:280:DyaK1c3mtFCjsQ%3D%3D Occurrence Handle9600776

    CAS  PubMed  Google Scholar 

  43. S Majumdar HK Genant S Grampp DC Newitt VH Truong JC Lin A Mathur (1997) ArticleTitleCorrelation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging J Bone Miner Res 12 111–118 Occurrence Handle1:STN:280:DyaK2szot1Omsg%3D%3D Occurrence Handle9240733

    CAS  PubMed  Google Scholar 

  44. T Harrigan R Mann (1984) ArticleTitleCharacterization of microstructural anisotropy in orthotropic materials using a second rank tensor J Mater Sci 19 761–767 Occurrence Handle1:CAS:528:DyaL2cXhslWitL0%3D

    CAS  Google Scholar 

  45. AM Parfitt (1988) ArticleTitleBone histomorphometry: standardization of nomenclature, symbols and units: summary of a proposed system J Bone Miner Res 4 1–5 Occurrence Handle1:STN:280:DyaL1M%2FltFanug%3D%3D

    CAS  Google Scholar 

  46. T Hildebrand P Ruegsegger (1997) ArticleTitleQuantification of bone microarchitecture with the structure model index Comput Methods Biomech Biomed Eng 1 15–23

    Google Scholar 

  47. JA Hipp A Jansujwicz CA Simmons Snyder (1996) ArticleTitleTrabecular bone morphology using micro-magnetic resonance imaging J Bone Miner Res 11 286–297 Occurrence Handle1:STN:280:DyaK28vhvFGqtw%3D%3D Occurrence Handle8822353

    CAS  PubMed  Google Scholar 

  48. M Kothari T Chen J Lin D Newitt S Majumdar H Genant (1997) ArticleTitleThree dimensional bone architecture assessment:impact of image resolution Osteoporos Int 7 289

    Google Scholar 

  49. V Vieth TM Link A Letter T Persigehl D Newitt W Heindel S Majumdar (2001) ArticleTitleDoes the trabecular bone structure depicted by high- resolution MRI of the calcaneus reflect the true bone structure? Invest Radiol 36 210–217 Occurrence Handle1:STN:280:DC%2BD3Mzgs1Orug%3D%3D Occurrence Handle11283418

    CAS  PubMed  Google Scholar 

  50. Link, TM, Vieth, V, Langenberg, R, Meier, N, Lotter, A, Newitt, D, Majumdar, S (2003) “Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD.” Calcif tissue int 72: 156-165

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Link.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sell, C.A., Masi, J.N., Burghardt, A. et al. Quantification of Trabecular Bone Structure Using Magnetic Resonance Imaging at 3 Tesla—Calibration Studies Using Microcomputed Tomography as a Standard of Reference. Calcif Tissue Int 76, 355–364 (2005). https://doi.org/10.1007/s00223-004-0111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-004-0111-3

Keywords

Navigation