Skip to main content
Log in

The Local Langlands Correspondence for GL n over p-adic fields

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We extend our methods from Scholze (Invent. Math. 2012, doi:10.1007/s00222-012-0419-y) to reprove the Local Langlands Correspondence for GL n over p-adic fields as well as the existence of -adic Galois representations attached to (most) regular algebraic conjugate self-dual cuspidal automorphic representations, for which we prove a local-global compatibility statement as in the book of Harris-Taylor (The Geometry and Cohomology of Some Simple Shimura Varieties, 2001).

In contrast to the proofs of the Local Langlands Correspondence given by Henniart (Invent. Math. 139(2), 439–455, 2000), and Harris-Taylor (The Geometry and Cohomology of Some Simple Shimura Varieties, 2001), our proof completely by-passes the numerical Local Langlands Correspondence of Henniart (Ann. Sci. Éc. Norm. Super. 21(4), 497–544, 1988). Instead, we make use of a previous result from Scholze (Invent. Math. 2012, doi:10.1007/s00222-012-0419-y) describing the inertia-invariant nearby cycles in certain regular situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is the Weil group representation underlying the Weil-Deligne representation attached to π. We ignore the monodromy operator in this article.

  2. It would be more customary to write δ instead of β, but following this convention would result in too many different δ’s throughout this article.

  3. We caution the reader that we use the language used e.g. in SGA; in Berkovich’s language, these sheaves would be called vanishing cycle sheaves.

  4. More precisely, one should say arguments involving Shimura varieties. Many statements from local harmonic analysis that are used in the local arguments, e.g. base-change of representations, are only proved by global means.

  5. Our terminology is the one used e.g. in SGA and differs from Berkovich’s terminology, where these sheaves are called vanishing cycle sheaves.

  6. With the convention on the signature explained in the next few lines.

  7. Note that the number r is denoted j by Kottwitz.

  8. At least in the case F=ℚ p , but the description generalizes without problems. Note that one may use the algebraizations constructed in Theorem 2.4 instead of the Shimura varieties considered in [23].

  9. A word of warning may be in order: One can send an irreducible smooth representation π to its supercuspidal support, considered as an element of \(\mathcal{A}_{F}\), and hence define L(π,s), but this does not agree with the usual definition in general.

References

  1. Arthur, J., Clozel, L.: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. Annals of Mathematics Studies, vol. 120. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  2. Artin, M.: Algebraization of formal moduli. I. In: Global Analysis (Papers in Honor of K. Kodaira), pp. 21–71. Univ. Tokyo Press, Tokyo (1969)

    Google Scholar 

  3. Berkovich, V.G.: Vanishing cycles for formal schemes. II. Invent. Math. 125(2), 367–390 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductive \({\mathfrak{p}}\)-adic groups. I. Ann. Sci. Éc. Norm. Super. 10(4), 441–472 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Buzzard, K., Gee, T.: The conjectural connections between automorphic representations and Galois representations. arXiv:1009.0785. Proceedings of the LMS Durham Symposium (2011, to appear)

  6. Drinfel’d, V.G.: Elliptic modules. Mat. Sb. 94(136), 594–627 (1974)

    MathSciNet  Google Scholar 

  7. Faltings, G.: Group schemes with strict \(\mathcal{O}\)-action. Mosc. Math. J. 2(2), 249–279 (2002). Dedicated to Yuri I. Manin on the occasion of his 65th birthday

    MathSciNet  MATH  Google Scholar 

  8. Fargues, L.: Motives and automorphic forms: the Abelian case http://www.math.u-psud.fr/~fargues/Motifs_abeliens.ps

  9. Harris, M.: The local Langlands conjecture for GL(n) over a p-adic field, n<p. Invent. Math. 134(1), 177–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harris, M., Taylor, R.: The Geometry and Cohomology of Some Simple Shimura Varieties. Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001). With an appendix by Vladimir G. Berkovich

    MATH  Google Scholar 

  11. Henniart, G.: La conjecture de Langlands locale numérique pour GL(n). Ann. Sci. Éc. Norm. Super. 21(4), 497–544 (1988)

    MathSciNet  MATH  Google Scholar 

  12. Henniart, G.: Caractérisation de la correspondance de Langlands locale par les facteurs ϵ de paires. Invent. Math. 113(2), 339–350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henniart, G.: Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 139(2), 439–455 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: Conducteur des représentations du groupe linéaire. Math. Ann. 256(2), 199–214 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kazhdan, D.: Cuspidal geometry of p-adic groups. J. Anal. Math. 47, 1–36 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kottwitz, R.E.: On the λ-adic representations associated to some simple Shimura varieties. Invent. Math. 108(3), 653–665 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kottwitz, R.E.: Points on some Shimura varieties over finite fields. J. Am. Math. Soc. 5(2), 373–444 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Langlands, R.P.: Representations of abelian algebraic groups. Pac. J. Math. (Special Issue), 231–250 (1997). Olga Taussky-Todd: in memoriam

  19. Mantovan, E.: On certain unitary group Shimura varieties. Astérisque 291, 201–331 (2004) Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales

    MathSciNet  Google Scholar 

  20. Mantovan, E.: On the cohomology of certain PEL-type Shimura varieties. Duke Math. J. 129(3), 573–610 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mieda, Y.: On l-independence for the étale cohomology of rigid spaces over local fields. Compos. Math. 143(2), 393–422 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Schneider, P., Zink, E.-W.: K-types for the tempered components of a p-adic general linear group. J. Reine Angew. Math. 517, 161–208 (1999). With an appendix by Schneider and U. Stuhler

    MathSciNet  MATH  Google Scholar 

  23. Scholze, P.: The Langlands-Kottwitz approach for some simple Shimura varieties. Invent. Math. (2012). doi:10.1007/s00222-012-0419-y

    MATH  Google Scholar 

  24. Scholze, P.: The Langlands-Kottwitz approach for the modular curve. Int. Math. Res. Not. 15, 3368–3425 (2011)

    MathSciNet  Google Scholar 

  25. Scholze, P.: The Langlands-Kottwitz method and deformation spaces of p-divisible groups. arXiv:1110.0230. Am. Math. Soc. (2011, to appear)

  26. Scholze, P., Shin, S.W.: On the cohomology of compact unitary group Shimura varieties at ramified split places. arXiv:1110.0232. Am. Math. Soc. (2011, to appear)

  27. Shin, S.W.: Counting points on Igusa varieties. Duke Math. J. 146(3), 509–568 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Strauch, M.: On the Jacquet-Langlands correspondence in the cohomology of the Lubin-Tate deformation tower. Astérisque 298, 391–410 (2005). Automorphic forms. I

    MathSciNet  Google Scholar 

  29. Varshavsky, Y.: Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara. Geom. Funct. Anal. 17(1), 271–319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zelevinsky, A.V.: Induced representations of reductive \({\mathfrak{p}}\)-adic groups. II. On irreducible representations of GL(n). Ann. Sci. Éc. Norm. Super. 13(2), 165–210 (1980)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

First of all, I thank my advisor M. Rapoport for explaining me the Langlands-Kottwitz method of counting points, which plays a crucial role in this article, for his encouragement to work on this topic, and for the many other things he taught me. Furthermore, my thanks go to Guy Henniart and Vincent Sécherre for their advice in type theory, among other things. Moreover, I am grateful for the financial support of the Hausdorff Center for Mathematics in Bonn, and the hospitality of the Institut Henri Poincaré and Harvard University, where part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Scholze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholze, P. The Local Langlands Correspondence for GL n over p-adic fields. Invent. math. 192, 663–715 (2013). https://doi.org/10.1007/s00222-012-0420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0420-5

Keywords

Navigation