Skip to main content
Log in

On the singularities of a free boundary through Fourier expansion

  • Published:
Inventiones mathematicae Aims and scope

Abstract

In this paper we are concerned with singular points of solutions to the unstable free boundary problem

$$\Delta u = - \chi_{\{u>0\}} \quad\hbox{in } B_1.$$

The problem arises in applications such as solid combustion, composite membranes, climatology and fluid dynamics.

It is known that solutions to the above problem may exhibit singularities—that is points at which the second derivatives of the solution are unbounded—as well as degenerate points. This causes breakdown of by-now classical techniques. Here we introduce new ideas based on Fourier expansion of the nonlinearity χ {u>0}.

The method turns out to have enough momentum to accomplish a complete description of the structure of the singular set in ℝ3.

A surprising fact in ℝ3 is that although

$$\frac{u(r\mathbf{x})}{\sup_{B_1}|u(r\mathbf{x})|}$$

can converge at singularities to each of the harmonic polynomials

$$xy,\qquad {x^2+y^2\over2}-z^2\quad \textrm{and}\quad z^2-{x^2+y^2\over2},$$

it may not converge to any of the non-axially-symmetric harmonic polynomials α((1+δ)x 2+(1−δ)y 2−2z 2) with δ≠1/2.

We also prove the existence of stable singularities in ℝ3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Struwe, M.: Existence of steady vortex rings in an ideal fluid. Arch. Ration. Mech. Anal. 108(2), 97–109 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersson, J., Shahgholian, H., Weiss, G.S.: Uniform regularity close to cross singularities in an unstable free boundary problem. Commun. Math. Phys. (2010)

  3. Andersson, J., Weiss, G.S.: Cross-shaped and degenerate singularities in an unstable elliptic free boundary problem. J. Differ. Equ. 228(2), 633–640 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blank, I.: Eliminating mixed asymptotics in obstacle type free boundary problems. Commun. Partial Differ. Equ. 29(7–8), 1167–1186 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L.A.: The regularity of free boundaries in higher dimensions. Acta Math. 139(3–4), 155–184 (1977)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L.A., Rivière, N.M.: Asymptotic behaviour of free boundaries at their singular points. Ann. Math. (2) 106(2), 309–317 (1977)

    Article  MATH  Google Scholar 

  8. Chanillo, S., Grieser, D., Imai, M., Kurata, K., Ohnishi, I.: Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys. 214(2), 315–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chanillo, S., Grieser, D., Kurata, K.: The free boundary problem in the optimization of composite membranes. In: Differential Geometric Methods in the Control of Partial Differential Equations, Boulder, CO, 1999. Contemp. Math., vol. 268, pp. 61–81. Am. Math. Soc., Providence (2000)

    Chapter  Google Scholar 

  10. Chanillo, S., Kenig, C.E.: Weak uniqueness and partial regularity for the composite membrane problem. J. Eur. Math. Soc. 10(3), 705–737 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chanillo, S., Kenig, C.E., To, T.: Regularity of the minimizers in the composite membrane problem in ℝ2. J. Funct. Anal. 255(9), 2299–2320 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Díaz, J.I., Shmarev, S.: Lagrangian approach to the study of level sets: application to a free boundary problem in climatology. Arch. Ration. Mech. Anal. 194(1), 75–103 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ganzburg, M.I.: Polynomial inequalities on measurable sets and their applications. Constr. Approx. 17(2), 275–306 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karp, L., Margulis, A.S.: Newtonian potential theory for unbounded sources and applications to free boundary problems. J. Anal. Math. 70, 1–63 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Monneau, R., Weiss, G.S.: An unstable elliptic free boundary problem arising in solid combustion. Duke Math. J. 136(2), 321–341 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pacard, F.: Partial regularity for weak solutions of a nonlinear elliptic equation. Manuscr. Math. 79(2), 161–172 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Price, P.: A monotonicity formula for Yang-Mills fields. Manuscr. Math. 43(2–3), 131–166 (1983)

    Article  MATH  Google Scholar 

  18. Rivière, T.: A lower-epiperimetric inequality for area-minimizing surfaces. Commun. Pure Appl. Math. 57(12), 1673–1685 (2004)

    Article  MATH  Google Scholar 

  19. Rivière, T., Tian, G.: The singular set of 1-1 integral currents. Ann. Math. (2) 169(3), 741–794 (2009)

    Article  MATH  Google Scholar 

  20. Schoen, R.M.: Analytic aspects of the harmonic map problem. In: Seminar on Nonlinear Partial Differential Equations, Berkeley, CA, 1983. Math. Sci. Res. Inst. Publ., vol. 2, pp. 321–358. Springer, New York (1984)

    Chapter  Google Scholar 

  21. Shahgholian, H.: The singular set for the composite membrane problem. Commun. Math. Phys. 271(1), 93–101 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Simon, L.: Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. (2) 118(3), 525–571 (1983)

    Article  MATH  Google Scholar 

  23. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, Vol. 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  24. Weiss, G.S.: Partial regularity for weak solutions of an elliptic free boundary problem. Commun. Partial Differ. Equ. 23(3–4), 439–455 (1998)

    Article  MATH  Google Scholar 

  25. White, B.: Tangent cones to two-dimensional area-minimizing integral currents are unique. Duke Math. J. 50(1), 143–160 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Shahgholian.

Additional information

H. Shahgholian has been supported in part by the Swedish Research Council. G.S. Weiss has been partially supported by the Grant-in-Aid 21540211 of the Japanese Ministry of Education, Culture, Sports, Science and Technology. He also thanks the Knut och Alice Wallenberg foundation for a visiting appointment to KTH. Both J. Andersson and G.S. Weiss thank the Göran Gustafsson Foundation for visiting appointments to KTH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, J., Shahgholian, H. & Weiss, G.S. On the singularities of a free boundary through Fourier expansion. Invent. math. 187, 535–587 (2012). https://doi.org/10.1007/s00222-011-0336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0336-5

Mathematics Subject Classification (2000)

Navigation