Skip to main content
Log in

Hyperbolic manifolds with convex boundary

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let (M,∂M) be a 3-manifold, which carries a hyperbolic metric with convex boundary. We consider the hyperbolic metrics on M such that the boundary is smooth and strictly convex. We show that the induced metrics on the boundary are exactly the metrics with curvature K>-1, and that the third fundamental forms of ∂M are exactly the metrics with curvature K<1, for which the closed geodesics which are contractible in M have length L>2π. Each is obtained exactly once.

Other related results describe existence and uniqueness properties for other boundary conditions, when the metric which is achieved on ∂M is a linear combination of the first, second and third fundamental forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Lectures on quasiconformal mappings. Toronto, Ont., New York, London: D. Van Nostrand Co., Inc. 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10

  2. Aleksandrov, A.D.: Vestnik Leningrad Univ. 13 (1958)

  3. Alexandrow, A.D.: Konvexe Polyeder. Berlin: Akademie 1958

  4. Andreev, E.M.: Convex polyhedra in Lobacevskii space. Mat. Sb. 81, 445–478 (1970)

    MATH  MathSciNet  Google Scholar 

  5. Andreev, E.M.: On convex polyhedra of finite volume in Lobacevskii space. Math. USSR Sb. 12, 225–259 (1971)

    Google Scholar 

  6. Bao, X., Bonahon, F.: Hyperideal polyhedra in hyperbolic 3-space. Bull. Soc. Math. Fr. 130, 457–491 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Bridgeman, M., Canary, R.D.: From the boundary of the convex core to the conformal boundary. Geom. Dedicata 96, 211–240 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bishop, C.J.: Minkowski dimension and the Poincaré exponent. Mich. Math. J. 43, 231–246 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bonahon, F., Otal, J.-P.: Laminations mesurées de plissage des variétés hyperboliques de dimension 3. http://math.usc.edu/∼fbonahon. Ann. Math. 160, 1013–1055 (2004)

    MathSciNet  Google Scholar 

  10. Bonahon, F.: Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form. Ann. Fac. Sci. Toulouse, VI. Sér., Math. 5, 233–297 (1996)

    MATH  MathSciNet  Google Scholar 

  11. Calabi, E.: On compact Riemannian manifolds with constant curvature, I. Proc. Symp. Pure Math. 3, 155–180 (1961)

    MATH  MathSciNet  Google Scholar 

  12. Cauchy, A.L.: Sur les polygones et polyèdres, second mémoire. J. Ec. Polytech. 19, 87–98 (1813)

    Google Scholar 

  13. Charney, R., Davis, M.: The polar dual of a convex polyhedral set in hyperbolic space. Mich. Math. J. 42, 479–510 (1995)

    Article  MathSciNet  Google Scholar 

  14. Colin de Verdière, Y.: Un principe variationnel pour les empilements de cercles. Invent. Math. 104, 655–669 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Coxeter, H.S.M.: A geometrical background for de Sitter’s world. Am. Math. Mon. 50, 217–228 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  16. Epstein, D.B.A., Marden, A.: Convex hulls in hyperbolic spaces, a theorem of Sullivan, and measured pleated surfaces. In: Analytical and geometric aspects of hyperbolic space, ed. by D.B.A. Epstein. L.M.S. Lecture Note Series, vol. 111. Cambridge University Press 1986

  17. Gajubov, G.N.: Transformation of locally convex isometric surfaces in a pseudo-Euclidean space. Taškent. Gos. Univ. Naučn. Trudy Vyp. 276, 24–30 (1966)

    MATH  MathSciNet  Google Scholar 

  18. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian geometry, third edition. Universitext. Berlin: Springer 2004

  19. Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc., New Ser. 7, 65–222 (1982)

    MATH  MathSciNet  Google Scholar 

  21. Hodgson, C.D., Kerckhoff, S.P.: Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery. J. Differ. Geom. 48, 1–60 (1998)

    MATH  MathSciNet  Google Scholar 

  22. Kapovich, M.: Hyperbolic manifolds and discrete groups. Prog. Math., vol. 183. Boston, MA: Birkhäuser Boston Inc. 2001

  23. Labourie, F.: Immersions isométriques elliptiques et courbes pseudo-holomorphes. J. Differ. Geom. 30, 395–424 (1989)

    MATH  MathSciNet  Google Scholar 

  24. Labourie, F.: Métriques prescrites sur le bord des variétés hyperboliques de dimension 3. J. Differ. Geom. 35, 609–626 (1992)

    MATH  MathSciNet  Google Scholar 

  25. Labourie, F.: Surfaces convexes dans l’espace hyperbolique et CP1-structures. J. Lond. Math. Soc., II. Ser. 45, 549–565 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Labourie, F.: Problèmes de Monge-Ampère, courbes holomorphes et laminations. Geom. Funct. Anal. 7, 496–534 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lecuire, C.: Plissage des variétés hyperboliques de dimension 3. To appear in Invent. Math.

  28. Legendre, A.-M.: Eléments de géométrie, première édition, note XII, pp. 321–334. Paris 1793 (an II)

  29. Labourie, F., Schlenker, J.-M.: Surfaces convexes fuchsiennes dans les espaces lorentziens à courbure constante. Math. Ann. 316, 465–483 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Moussong, G.: Personal communication. July 2002

  31. Nirenberg, L.: The Weyl and Minkowski problem in differential geometry in the large. Commun. Pure Appl. Math 6, 337–394 (1953)

    MATH  MathSciNet  Google Scholar 

  32. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. Transl. Math. Monogr., vol. 35. American Mathematical Society 1973

  33. Rivin, I., Hodgson, C.D.: A characterization of compact convex polyhedra in hyperbolic 3-space. Invent. Math. 111, 77–111 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rivin, I.: Thesis. PhD thesis. Princeton University 1986

  35. Rivin, I.: On the geometry of ideal polyhedra in hyperbolic 3-space. Topology 32, 87–92 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rivin, I.: Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. Math. 139, 553–580 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rivin, I.: A characterization of ideal polyhedra in hyperbolic 3-space. Ann. Math. 143, 51–70 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Rousset, M.: Sur la rigidité de polyèdres hyperboliques en dimension 3 : cas de volume fini, cas hyperidéal, cas fuchsien. Bull. Soc. Math. Fr. 132, 233–261 (2004)

    MATH  MathSciNet  Google Scholar 

  39. Rivin, I., Schlenker, J.-M.: The Schläfli formula in Einstein manifolds with boundary. Electron. Res. Announc. Am. Math. Soc. 5, 18–23 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Schlenker, J.-M.: Surfaces elliptiques dans des espaces lorentziens à courbure constante. C. R. Acad. Sci., Sér. A 319, 609–614 (1994)

    MATH  MathSciNet  Google Scholar 

  41. Schlenker, J.-M.: Surfaces convexes dans des espaces lorentziens à courbure constante. Commun. Anal. Geom. 4, 285–331 (1996)

    MATH  MathSciNet  Google Scholar 

  42. Schlenker, J.-M.: Métriques sur les polyèdres hyperboliques convexes. J. Differ. Geom. 48, 323–405 (1998)

    MATH  MathSciNet  Google Scholar 

  43. Schlenker, J.-M.: Représentations de surfaces hyperboliques complètes dans H 3. Ann. Inst. Fourier 48, 837–860 (1998)

    MATH  MathSciNet  Google Scholar 

  44. Schlenker, J.-M.: Dihedral angles of convex polyhedra. Discrete Comput. Geom. 23, 409–417 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Schlenker, J.-M.: Convex polyhedra in Lorentzian space-forms. Asian J. Math. 5, 327–364 (2001)

    MATH  MathSciNet  Google Scholar 

  46. Schlenker, J.-M.: Einstein manifolds with convex boundaries. Comment. Math. Helv. 76, 1–28 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  47. Schlenker, J.-M.: Hyperbolic manifolds with polyhedral boundary. math.GT/0111136, available at http://picard.ups-tlse.fr/∼schlenker, 2001

  48. Schlenker, J.-M.: Hyperideal polyhedra in hyperbolic manifolds. Preprint math.GT/0212355, 2002

  49. Schlenker, J.-M.: Hypersurfaces in H n and the space of its horospheres. Geom. Funct. Anal. 12, 395–435 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Schlenker, J.-M.: Hyperbolic manifolds with constant curvature boundaries. In preparation, 2005

  51. Schlenker, J.-M.: Hyperideal circle patterns. Math. Res. Lett. 12, 82–112 (2005)

    MathSciNet  Google Scholar 

  52. Schlenker, J.-M.: A rigidity criterion for non-convex polyhedra. Discrete Comput. Geom. 33, 207–221 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  53. Thurston, W.P.: Three-dimensional geometry and topology. Recent version available on http://www.msri.org/publications/books/gt3m/, 1980

  54. Vekua, I.N.: Generalized analytic functions. London: Pergamon Press 1962

  55. Weil, A.: On discrete subgroups of Lie groups. Ann. Math. 72, 369–384 (1960)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Schlenker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlenker, JM. Hyperbolic manifolds with convex boundary. Invent. math. 163, 109–169 (2006). https://doi.org/10.1007/s00222-005-0456-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-005-0456-x

Keywords

Navigation