Skip to main content
Log in

Non-Levi Closed Conjugacy Classes of SP q (2n)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct an explicit quantization of semi-simple conjugacy classes of the complex symplectic group SP(2n) with non-Levi isotropy subgroups through an operator realization on highest weight modules over the quantum group \({U_q\bigl(\mathfrak{sp}(2n)\bigr)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mudrov A.: Quantum conjugacy classes of simple matrix groups. Commun. Math. Phys. 272, 635–660 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Mudrov A.: Quantum sphere \({\mathbb{S}^4}\) as non-Levi conjugacy class. Lett. Math. Phys. 101(2), 157–172 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Mudrov, A.: Non-Levi closed conjugacy classes of SO q (N). http://arxiv.org/abs/1112.2385v2 [math.QA], 2011

  4. Kulish P.P., Sklyanin E.K.: Algebraic structure related to the reflection equation. J. Phys. A 25, 5963–5975 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Majid S.: Examples of braided groups and braided matrices. J. Math. Phys. 32, 3246–3253 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Donin J., Mudrov A.: Method of quantum characters in equivariant quantization. Commun. Math. Phys. 234, 533–555 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8, 177–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freund P., Zabrodin A.: Z(n) Baxter models and quantum symmetric spaces. Phys. Lett. B 284, 283–288 (1982)

    MathSciNet  Google Scholar 

  9. Koornwinder T.: Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group. SIAM J. Math. Anal. 24, 795–813 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Noumi M.: Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces. Adv. Math. 123, 16–77 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Letzter G.: Quantum Zonal Spherical Functions and Macdonald Polynomials. Adv. Math. 189, 88–147 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Noumi, M., Sugitani, T.: Quantum symmetric spaces and related qorthogonal polynomials. River Edge, NJ: World Sci. Publishing, 1995, pp. 28–40

  13. Letzter G.: Symmetric pairs for quantized enveloping algebras. J. Algebra 220, 729–767 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Letzter, G.: Coideal Subalgebras and Quantum Symmetric Pairs. MSRI Publications 43, Cambridge: Cambridge University Press, 2002, pp. 117–166

  15. Letzter G.: Quantum Symmetric Pairs and Their Zonal Spherical Functions. Transformation Groups 8, 261–292 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Drinfeld, V.: Quantum Groups. In: Proc. Int. Congress of Mathematicians, Berkeley 1986, Gleason, A. V. (ed.) Providence, RI: Amer Math. Soc., 1987, pp. 798–820

  17. Belavin, A., Drinfeld, V.: Triangle equations and simple Lie algebras. In: Classic Reviews in Mathematics and Mathematical Physics, 1, Amsterdam: Harwood Academic Publishers, 1998

  18. Eisenbud D.: Commutative algebra with a view towards algebraic geometry. Springer, New York (1995)

    Google Scholar 

  19. Procesi C.: A formal inverse to the Cayley-Hamilton theorem. J. Algebra 107, 63–74 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kébé M.: \({\mathcal{O}}\) -algèbres quantiques. C. R. Acad. Sci. Paris Sr. I Math. 322, 1–4 (1996)

    MATH  Google Scholar 

  21. Mudrov, A.: On dynamical adjoint functor. Appl. Cat. Str., to appear. doi:10.1007/s10485-011-9272-1, 2012

  22. Chari V., Pressley A.: A guide to quantum groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  23. Faddeev L., Reshetikhin N., Takhtajan L.: Quantization of Lie groups and Lie algebras. Leningrad Math. J. 1, 193–226 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Mudrov A.: On quantization of Semenov-Tian-Shansky Poisson bracket on simple algebraic groups. Algebra & Analyz 5, 156–172 (2006)

    Google Scholar 

  25. Richardson R.: An application of the Serre conjecture to semisimple algebraic groups. Lect. Notes in Math. 848, 141–151 (1981)

    Article  ADS  Google Scholar 

  26. Donin J., Mudrov A.: Reflection Equation, Twist, and Equivariant Quantization. Isr. J. Math. 136, 11–28 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Etingof P., Schiffmann O., Schedler T.: Explicit quantization of dynamical r-matrices for finite dimensional semi-simple Lie algebras. J. AMS 13, 595–609 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Mudrov A., Ostapenko V.: Quantization of orbit bundles in gl(n)*. Isr. J. Math. 172, 399–423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Mudrov.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudrov, A. Non-Levi Closed Conjugacy Classes of SP q (2n). Commun. Math. Phys. 317, 317–345 (2013). https://doi.org/10.1007/s00220-012-1616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1616-7

Keywords

Navigation