Skip to main content
Log in

On the Third Critical Field in Ginzburg-Landau Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using recent results by the authors on the spectral asymptotics of the Neumann Laplacian with magnetic field, we give precise estimates on the critical field, \(H_{C_3}\), describing the appearance of superconductivity in superconductors of type II. Furthermore, we prove that the local and global definitions of this field coincide. Near \(H_{C_3}\) only a small part, near the boundary points where the curvature is maximal, of the sample carries superconductivity. We give precise estimates on the size of this zone and decay estimates in both the normal (to the boundary) and parallel variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S. Lectures on exponential decay of solutions of second order elliptic equations. Math. Notes, T. 29, Princeton, NI: Princeton University Press, 1982

  2. Bauman P., Phillips D., Tang Q. (1998) Stable nucleation for the Ginzburg-Landau system with an applied magnetic field. Arch. Rat. Mech. Anal. 142, 1–43

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernoff A., Sternberg P. (1998) Onset of superconductivity in decreasing fields for general domains. J. Math. Phys. 39, 1272–1284

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bolley C., Helffer B. (1993) An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material. Ann. Inst. H. Poincaré (Section Physique Théorique) 58(2): 169–233

    MathSciNet  Google Scholar 

  5. Bonnaillie, V. Analyse mathématique de la supraconductivité dans un domaine à coins : méthodes semi-classiques et numériques. Thèse de Doctorat, Université Paris 11, 2003

  6. Bonnaillie V. (2005) On the fundamental state for a Schrödinger operator with magnetic fields in domains with corners. Asymptotic Anal. 41(3–4): 215–258

    MathSciNet  MATH  Google Scholar 

  7. Bonnaillie-Noël V., Dauge M. Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near a corner. Preprint University of Rennes, 2005

  8. Dauge M., Helffer B. (1993) Eigenvalues variation I, Neumann problem for Sturm-Liouville operators. J. Differ. Eqs. 104(2): 243–262

    Article  MathSciNet  MATH  Google Scholar 

  9. Du X., Gunzburger M.D., Peterson J.S. (1992) Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34(1): 54–81

    Article  MathSciNet  MATH  Google Scholar 

  10. Fournais, S., Helffer, B. Energy asymptotics for type II superconductors. Calc. Var. and PDE 24, no. 3, 341–376 (2005)

  11. Fournais, S., Helffer, B. Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian. Preprint 2004. To appear in Annales de l’Institut Fourier.

  12. Giorgi, T., Phillips, D. The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model. SIAM J. Math. Anal. 302, no. 2, 341–359 (1999) (electronic)

  13. Helffer B. (1988) Introduction to the semiclassical analysis for the Schrödinger operator and applications. Springer Lecture Notes in Math. 1336, Springer Verlag, Berlin Heidelberg New york

    Google Scholar 

  14. Helffer B., Mohamed A. (1996) Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal. 138(1): 40–81

    Article  MathSciNet  MATH  Google Scholar 

  15. Helffer B., Morame A. (2001) Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185(2): 604–680

    Article  MathSciNet  MATH  Google Scholar 

  16. Helffer B., Pan X. (2003) Upper critical field and location of surface nucleation of superconductivity. Ann. Inst. H. Poincaré (Section Analyse non linéaire) 20(1): 145–181

    Article  MathSciNet  MATH  Google Scholar 

  17. Helffer B., Sjöstrand J. (1984) Multiple wells in the semiclassical limit I. Comm. Partial Differ. Eqs. 9(4): 337–408

    Article  MATH  Google Scholar 

  18. Kato T. (1976) Perturbation theory for linear operators. Springer-Verlag, Berlin

    MATH  Google Scholar 

  19. Lu K., Pan X.-B. (1999) Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. Physica D 127, 73–104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Lu K., Pan X.-B. (1999) Eigenvalue problems of Ginzburg-Landau operator in bounded domains. J. Math. Phys. 40(6): 2647–2670

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Lu K., Pan X.-B. (2000) Gauge invariant eigenvalue problems on \(\mathbb {R}\) 2 and \(\mathbb {R}\) 2 +. Trans. Amer. Math. Soc. 352(3): 1247–1276

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu K., Pan X.-B. (2000) Surface nucleation of superconductivity in 3-dimension. J. Differ. Eqs. 168(2): 386–452

    Article  MathSciNet  MATH  Google Scholar 

  23. Pan X.-B. (2002) Surface superconductivity in applied magnetic fields above \(H_{C_3}\). Commun. Math. Phys. 228, 327–370

    Article  ADS  MATH  Google Scholar 

  24. del Pino M., Felmer P.L., Sternberg P. (2000) Boundary concentration for eigenvalue problems related to the onset of superconductivity. Commun. Math. Phys. 210, 413–446

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Reed M., Simon B. (1978) Methods of modern Mathematical Physics, IV : Analysis of operators. Academic Press, New York

    MATH  Google Scholar 

  26. Saint-James D., Sarma G., Thomas E.J. (1969) Type II Superconductivity. Pergamon, Oxford

    Google Scholar 

  27. Simon B. (1983) Semi-classical analysis of low lying eigenvalues I. Ann. Inst. H. Poincaré (Section Physique Théorique) 38(4): 295–307

    MATH  Google Scholar 

  28. Sternberg P. (1999), On the Normal/Superconducting Phase Transition in the Presence of Large Magnetic Fields. In: Berger J., Rubinstein J. (eds). Connectivity and Superconductivity. Springer-Verlag, Berlin Heidelberg New york, pp. 188–199

    Google Scholar 

  29. Tilley D.R., Tilley J. (1990) Superfluidity and superconductivity. 3rd edition. Institute of Physics Publishing, Bristol-Philadelphia

    Google Scholar 

  30. Tinkham M. (1975) Introduction to Superconductivity. McGraw-Hill Inc., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fournais.

Additional information

Communicated by B. Simon

The two authors are supported by the European Research Network ‘Postdoctoral Training Program in Mathematical Analysis of Large Quantum Systems’ with contract number HPRN-CT-2002-00277, and the ESF Scientific Programme in Spectral Theory and Partial Differential Equations (SPECT). Part of this work was carried out while S.F. visited CIMAT, Mexico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournais, S., Helffer, B. On the Third Critical Field in Ginzburg-Landau Theory. Commun. Math. Phys. 266, 153–196 (2006). https://doi.org/10.1007/s00220-006-0006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0006-4

Keywords

Navigation