Skip to main content
Log in

Determining urea levels in dialysis human serum by means of headspace solid phase microextraction coupled with ion mobility spectrometry and on the basis of nanostructured polypyrrole film

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple and sensitive headspace (HS) solid phase microextraction (SPME) coupled with ion mobility spectrometry (IMS) method is presented for analysis of urea in dialysis human serum samples. A dodecylbenzenesulfonate-doped polypyrrole coating was used as a fiber for SPME. The HS-SPME–IMS method exhibits good repeatability (relative standard deviation of 3 % or less), simplicity, and good sensitivity. The influence of various analytical parameters such as pH, ionic strength, extraction time and temperature was investigated and the parameters were optimized. The calibration graph was linear in the range from 5 to 50 μg mL−1, and the detection limit was 2 μg mL−1. The method was applied successfully for determination of urea in human serum and with acceptable recovery (more than 98 %). Finally, a standard addition calibration method was applied to the HS-SPME-IMS method for the analysis of human serum samples before and at the end of dialysis. The proposed method appears to be suitable for the analysis of urea in serum samples as it is not time-consuming and requires only small quantities of the sample without any derivatization process.

The ion mobility spectrum obtained by HS-SPME–IMS using a PPy fiber under optimum conditions from headspace of 5 mL (A): 2 µg mL-1 of urea solution, (B): non-spiked control serum sample, (C): non-spiked patient 1 serum sample before dialysis, (D) non-spiked patient 1 serum sample at the end of dialysis, (E) spiked patient 1 serum sample at the end of dialysis with 10 µg mL−1 of urea, (F): non-spiked patient 2 serum sample before dialysis, (G): non-spiked patient 2 serum sample at the end of dialysis, (H): spiked patient 2 serum sample at the end of dialysis with 10 µg mL−1 of urea

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O'Reilly SE, Kelly M, Morrin A, Smyth MR, Killard AJ (2011) Anal Chim Acta 697:98–102

    Article  Google Scholar 

  2. Eggenstein C, Borchardt M, Diekmann C, Grundig B, Dumschat C, Cammann K, Knoll M, Spener F (1999) Biosens Bioelectron 14:33–41

    Article  CAS  Google Scholar 

  3. Koncki R, Chudzik A, Walcerz I (1999) J Pharma Biomed Anal 21:51–57

    Article  CAS  Google Scholar 

  4. Trivedi UB, Lakshminarayana D, Kothari IL, Patel NG, Kapse HN, Makhija KK, Patel PB, Panchal CJ (2009) Sens Actuators B 140:260–266

    Article  CAS  Google Scholar 

  5. Wałcerz I, Głąb S, Koncki R (1998) Anal Chim Acta 369:129–137

    Article  Google Scholar 

  6. Clark S, Francis PS, Conlan XA, Barnett NW (2007) J Chromatogr A 1161:207–213

    Article  CAS  Google Scholar 

  7. Castro MCM, Romao JE, Marcondes J, Marcondes M (2001) Nephrol Dial Transplant 16:1814–1817

    Article  CAS  Google Scholar 

  8. Lakard B, Magnin D, Deschaume O, Vanlancker G, Glinel K, Demoustier-Champagne S, Nysten B, Jonas AM, Bertrand P, Yunus S (2011) Biosens Bioelectron 26:4139–4145

    Article  CAS  Google Scholar 

  9. Lee WY, Kim SR, Kim TH, Lee KS, Shin MC, Park JK (2000) Anal Chim Acta 404:195–203

    Article  CAS  Google Scholar 

  10. Miyauchi T, Miyachi Y, Takahashi M, Ishikawa N, Mori H (2010) Anal Sciences 26:847–852

    Article  CAS  Google Scholar 

  11. Heitland P, Koster HD (2006) Clin Chim Acta 365:310–318

    Article  CAS  Google Scholar 

  12. Usman Ali SM, Ibupoto ZH, Salman S, Nur O, Willander M, Danielsson B (2011) Sens Actuators B 160:637–643

    Article  Google Scholar 

  13. Tabrizchi M, ILbeigi V (2010) J Hazard Mater 176:692–696

    Article  CAS  Google Scholar 

  14. Guerra P, Lai H, Almirall JR (2008) J Sep Sci 31:2891–2898

    Article  CAS  Google Scholar 

  15. Lai H, Leung A, Magee M, Almirall JR (2010) Anal Bioanal Chem 396:2997–3007

    Article  CAS  Google Scholar 

  16. Karimi A, Alizadeh N (2009) Talanta 79:479–485

    Article  CAS  Google Scholar 

  17. Gura S, Guerra-Diaz P, Lai H, Almirall JR (2009) Drug Test Anal 1:355–362

    Article  CAS  Google Scholar 

  18. Shahdousti P, Alizadeh N (2011) Anal Chim Acta 684:58–62

    Article  Google Scholar 

  19. Colgrave ML, Bramwell CJ, Creaser CS (2003) Int J Mass Spectrom 229:209–216

    Article  CAS  Google Scholar 

  20. Beegle LW, Kanik I (2001) Anal Chem 73:3028–3034

    Article  CAS  Google Scholar 

  21. Steiner WE, Clowers BH, Hill HH Jr (2003) Anal Bioanal Chem 375:99–102

    CAS  Google Scholar 

  22. Hashemian Z, Mardihallaj A, Khayamian T (2010) Talanta 81:1081–1087

    Article  CAS  Google Scholar 

  23. Tiebe C, Miessner H, Koch B, Hübert T (2009) Anal Bioanal Chem 395:2313–2323

    Article  CAS  Google Scholar 

  24. Arce L, Menendez M, Delgado RG, Valcarcel M (2008) Trends Anal Chem 27:139–151

    Article  CAS  Google Scholar 

  25. Alizadeh N, Jafari M, Mohammadi A (2009) J Hazard Mater 169:861–867

    Article  CAS  Google Scholar 

  26. Ulrich S (2000) J Chromatogr A 902:167–194

    Article  CAS  Google Scholar 

  27. Vidal JC, Garcia E, Castillo JR (1999) Anal Chim Acta 385:213–222

    Article  CAS  Google Scholar 

  28. Campbell TE, Hodgson AJ, Wallace GG (1999) Electroanalysis 11:215–222

    Article  CAS  Google Scholar 

  29. Jerome C, Labayc D, Bodart I, Jerome R (1999) Synth Met 101:3–4

    Article  CAS  Google Scholar 

  30. Smela E (1999) J Micromech Microeng 9:1–18

    Article  CAS  Google Scholar 

  31. Ilo T, Buhlmann P, Umezawa Y (1999) Anal Chem 71:1699–1705

    Article  Google Scholar 

  32. Wan M (2008) Adv Mater 20:2926–2932

    Article  CAS  Google Scholar 

  33. Zhang F, Nyberg T, Inganäs O (2002) Nano Lett 2:1373–1377

    Article  CAS  Google Scholar 

  34. Lee JI, Cho SH, Park SM, Kim JK, Kim JK, Yu JW, Kim YC, Russell TP (2008) Nano Lett 8:2315–2320

    Article  CAS  Google Scholar 

  35. Wang F, Ma S, Zhang D, Cooks RG (1998) J Phys Chem A 102:2988–2994

    Article  CAS  Google Scholar 

  36. Bernhard AM, Czekaj I, Elsener M, Wokaun A, Krocher O (2011) J Phys Chem A 115:2581–2589

    Article  CAS  Google Scholar 

  37. Lambropoulou DA, Albanis TA (2004) Anal Chim Acta 514:125–130

    Article  CAS  Google Scholar 

  38. Doong RA, Liao PL (2001) J Chromatogr A 918:177–188

    Article  CAS  Google Scholar 

  39. Zuliani T, Lespes G, Milacic R, Scancar J, Gautier MP (2006) J Chromatogr A1132:234–240

    Google Scholar 

  40. Moreno DV, Ferrera ZS, Rodrıguez JJS (2006) Anal Chim Acta 571:51–57

    Article  CAS  Google Scholar 

  41. Hook GL, Kimm G, Koch D, Savage PB, Ding B, Smith PA (2003) J Chromatogra A 992:1–9

    Article  CAS  Google Scholar 

  42. Pozzi R, Pinelli F, Bocchini P, Galletti GC (2004) Anal Chim Acta 504:313–317

    Article  CAS  Google Scholar 

  43. Bell SE, Ewing RG, Eiceman GA (1994) J Am Soc Mass Spectrom 5:177–185

    Article  CAS  Google Scholar 

  44. Chen JP, Isa K (1998) J Mass Spectrom Soc Jpn 46:299–303

    Article  CAS  Google Scholar 

  45. Alizadeh N, Shahdousti P, Nabavi S, Tabrizchi M (2011) Int J Mass Spectrom 308:18–25

    Article  CAS  Google Scholar 

  46. Slaugther G (2012) IEEE Sens J 12:821–827

    Article  CAS  Google Scholar 

  47. Sahney R, Puri BK (2005) Anal Chim Acta 542:157–161

    Article  CAS  Google Scholar 

  48. Goeyens L, Kindermans N, Abu Yusuf M, Elskens M (1998) Estuar Coast Shelf Sci 47:415–418

    Article  CAS  Google Scholar 

  49. Wittwer FG, Gallardo P, Reyes J, Opitz H (1999) Prev Vet Med 38:159–166

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported with grants from Tarbiat Modares University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naader Alizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalhor, H., Alizadeh, N. Determining urea levels in dialysis human serum by means of headspace solid phase microextraction coupled with ion mobility spectrometry and on the basis of nanostructured polypyrrole film. Anal Bioanal Chem 405, 5333–5339 (2013). https://doi.org/10.1007/s00216-013-6912-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6912-3

Keywords

Navigation