Skip to main content
Log in

Structural stability–chromatographic retention relationship on exenatide diastereomer separation

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, the relationship of the structural stability of peptide diastereomers in elution solvents and their retention behaviors in reversed-phase chromatography (RPC) was examined to provide guidance on the solvent selection for a better separation of peptide diastereomers. We investigated the chromatographic retention behaviors of exenatide, a peptide drug for the treatment of type II diabetes mellitus and its three diastereomers using RPC and implicit molecular dynamics (MD) simulation analysis. Three diastereomers involved in the single serine residue mutation of d-form at the 11th, 32nd, and 39th residues were investigated in this study. Results show that the order of the solution structural stability of exenatide and its diastereomers is consistent with their retention order by 36 % acetonitrile/water elution. The sample loading solvent also affects the retention behaviors of exenatide peptide diastereomers in RPC column. Furthermore, a larger solution conformation energy difference of the critical pair of exenatide and its diastereomer (d-Ser39) at the elution solvent of 32 % tetrahydrofuran/water were obtained by MD simulation, and baseline separation was proved experimentally. In summary, we demonstrated that the solution structural stability–chromatographic retention relationship could be a powerful tool for elution solvent selection in peptide chromatographic purification, especially valuable for the separation of critical pair of diastereomers.

The structural stability and reversed-phase chromatography (RPC) retention relationship was investigated for a better chromatographic separation of peptides. Our results revealed that the rigid peptide with lower solution conformation energy exhibits a smaller retention factor in RPC column. Conversely, the flexible peptide with the higher solution conformation energy exhibits a larger retention factor. Based on this finding, we have examined that the baseline separation could be achieved by tuning the elution solvent composition to increase the structural stability difference between peptides. Consequently, the structural stability and RPC retention relationship could actually provide an important guidance on peptide separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

CD:

Circular dichroism

HPLC:

High-performance liquid chromatography

MD:

Molecular dynamics

MeOH:

Methanol

RPC:

Reversed-phase chromatography

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

References

  1. Youn YS, Na DH, Yoo SD, Song SC, Lee KC (2004) J Chromatogr A 1061:45–49

    Article  CAS  Google Scholar 

  2. Cai Y, Yue P (2011) J Chromatogr A 1218:6953–6960

    CAS  Google Scholar 

  3. Park EJ, Lee KC, Na DH (2009) J Chromatogr A 1216:7793–7797

    Article  CAS  Google Scholar 

  4. Dou H, Zhang M, Zhang Y, Yin C (2007) 69:132-138

  5. Lee KC, Moon SC, Park MO, Lee JT, Na DH, Yoo SD, Lee HS, DeLuca PP (1999) Pharm Res 16:813–818

    Article  CAS  Google Scholar 

  6. Sanz-Nebot V, Benavente F, Toro I, Barbosa J (2003) Anal Bioanal Chem 377:306–315

    Article  CAS  Google Scholar 

  7. Murray JK, Aral J, Miranda LP (2011) Methods Mol Biol 716:73–88

    Article  CAS  Google Scholar 

  8. Wessman P, Morin M, Reijmar K, Edwards K (2010) J Colloid Interface Sci 346:127–135

    Article  CAS  Google Scholar 

  9. Lopez-Oyama AB, Taboada P, Burboa MG, Rodriguez E, Mosquera V, Valdez MA (2011) J Colloid Interface Sci 359:279–288

    Article  CAS  Google Scholar 

  10. Tsai CW, Hsu NY, Wang CH, Lu CY, Chang Y, Tsai HH, Ruaan RC (2009) J Mol Biol 392:837–854

    Article  CAS  Google Scholar 

  11. Loose C, Jensen K, Rigoutsos I, Stephanopoulos G (2006) Nature 443:867–869

    Article  CAS  Google Scholar 

  12. Arthanari Y, Pluen A, Rajendran R, Aojula H, Demonacos C (2010) J Control Release 145:272–280

    Article  CAS  Google Scholar 

  13. Zaro JL, Vekich JE, Tran T, Shen WC (2009) Mol Pharm 6:337–344

    Article  CAS  Google Scholar 

  14. Stromstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M (2009) Antimicrob Agents Chemother 53:593–602

    Article  Google Scholar 

  15. Jung HJ, Jeong KS, Lee DG (2008) J Microbiol Biotechnol 18:990–996

    CAS  Google Scholar 

  16. Younes AA, Mangelings D, Vander Heyden Y (2011) J Pharm Biomed Anal 56:521–537

    Article  CAS  Google Scholar 

  17. Gaggeri R, Rossi D, Collina S, Mannucci B, Baierl M, Juza M (2011) J Chromatogr A 1218:5414–5422

    Article  CAS  Google Scholar 

  18. Guo Z, Wang H, Zhang Y (2006) J Pharm Biomed Anal 41:310–314

    Article  CAS  Google Scholar 

  19. McMurtrey K, Strawbridge C, McCoy J (2000) Enantiomer 5:377–383

    CAS  Google Scholar 

  20. Arai T (1998) J Chromatogr B: Biomed Sci Appl 717:295–311

    Article  CAS  Google Scholar 

  21. Xiao TL, Rozhkov RV, Larock RC, Armstrong DW (2003) Anal Bioanal Chem 377:639–654

    Article  CAS  Google Scholar 

  22. Conrad U, Chankvetadze B, Scriba GK (2005) J Sep Sci 28:2275–2281

    Article  CAS  Google Scholar 

  23. Pittler E, Grawatsch N, Paul D, Gubitz G, Schmid MG (2009) Electrophoresis 30:2897–2904

    Article  CAS  Google Scholar 

  24. Pirkle WH, Alessi DM, Hyun MH, Pochapsky TC (1987) J Chromatogr 398:203–209

    Article  CAS  Google Scholar 

  25. Winter D, Pipkorn R, Lehmann WD (2009) J Sep Sci 32:1111–1119

    Article  CAS  Google Scholar 

  26. Huang HM, Lin FY, Chen WY, Ruaan RC (2000) J Colloid Interface Sci 229:600–606

    Article  CAS  Google Scholar 

  27. Lin FY, Chen WY, Sang LC (1999) J Colloid Interface Sci 214:373–379

    Article  CAS  Google Scholar 

  28. Tsai CW, Liu CI, Chan YC, Tsai HH, Ruaan RC (2010) J Phys Chem B 114:11620–11627

    Article  CAS  Google Scholar 

  29. Nielsen LL, Baron AD (2003) Curr Opin Investig Drugs 4:401–405

    CAS  Google Scholar 

  30. Neidigh JW, Fesinmeyer RM, Prickett KS, Andersen NH (2001) Biochemistry 40:13188–13200

    Article  CAS  Google Scholar 

  31. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) J Comput Chem 30:1545–1614

    Article  CAS  Google Scholar 

  32. Chocholousova J, Feig M (2006) J Comput Chem 27:719–729

    Article  CAS  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38, 27-38

    Article  CAS  Google Scholar 

  34. Barton AFM (1983) Handbook of solubility parameters, 2nd edn. CRC Press, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank ScinoPharm Taiwan, Ltd., for financially supporting this project. The authors also thank the National Center for High-Performance Computing of Taiwan and Vger Computer Cluster at National Center University of Taiwan for providing computer time and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Yih Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 72.8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, CW., Kao, WH., Chang, LC. et al. Structural stability–chromatographic retention relationship on exenatide diastereomer separation. Anal Bioanal Chem 404, 2437–2444 (2012). https://doi.org/10.1007/s00216-012-6352-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6352-5

Keywords

Navigation